DOI QR코드

DOI QR Code

Effect of Extremely Low Frequency Electromagnetic Fields (EMF) on Phospholipase Activity in the Cultured Cells

  • Received : 2010.11.04
  • Accepted : 2010.11.17
  • Published : 2010.12.31

Abstract

This study was conducted to investigate the effects of extremely low frequency electromagnetic fields (EMF) on signal pathway in plasma membrane of cultured cells (RAW 264.7 cells and RBL 2H3 cells), by measuring the activity of phospholipase $A_2$ ($PLA_2$), phospholipase C (PLC) and phospholipase D (PLD). The cells were exposed to the EMF (60 Hz, 0.1 or 1 mT) for 4 or 16 h. The basal and $0.5\;{\mu}M$ melittin-induced arachidonic acid release was not affected by EMF in both cells. In cell-free $PLA_2$ assay, we failed to observe tbe change of $cPLA_2$ and $sPLA_2$ activity. Also both PLC and PLD activities did not show any change in the two cell lines exposed to EMF. This study suggests that the exposure condition of EMF (60 Hz, 0.1 or 1 mT) which is 2.4 fold higher than the limit of occupational exposure does not induce phospholipases-associated signal pathway in RAW 264.7 cells and RBL 2H3 cells.

Keywords

References

  1. Wertheimer N, Leeper E. Electrical wiring configurations and childhood cancer. Am J Epidemiol. 1979;109:273-284. https://doi.org/10.1093/oxfordjournals.aje.a112681
  2. Floderus B, Persson T, Stenlund C, Wennberg A, Ost A, Knave B. Occupational exposure to electromagnetic fields in relation to leukemia and brain tumors: a case-control study in Sweden. Cancer Causes Control. 1993;4:465-476. https://doi.org/10.1007/BF00050866
  3. Matanoski GM, Elliott EA, Breysse PN, Lynberg MC. Leukemia in telephone linemen. Am J Epidemiol. 1993;137:609-619. https://doi.org/10.1093/oxfordjournals.aje.a116718
  4. Glaser KB. Regulation of phospholipase $A_{2}$ enzymes: selective inhibitors and their pharmacological potential. Adv Pharmacol. 1995;32:31-66. https://doi.org/10.1016/S1054-3589(08)61011-X
  5. Attur MG, Patel R, Thakker G, Vyas P, Levartovsky D, Patel P, Naqvi S, Raza R, Patel K, Abramson D, Bruno G, Abramson SB, Amin AR. Differential anti-inflammatory effects of immunosuppressive drugs: cyclosporin, rapamycin and FK-506 on inducible nitric oxide synthase, nitric oxide, cyclooxygenase-2 and PGE2 production. Inflamm Res. 2000;49:20-26. https://doi.org/10.1007/PL00000199
  6. Petrone WF, English DK, Wong K, McCord JM. Free radicals and inflammation: superoxide-dependent activation of a neutrophil chemotactic factor in plasma. Proc Natl Acad Sci U S A. 1980;77:1159-1163. https://doi.org/10.1073/pnas.77.2.1159
  7. Chilvers ER, Barnes PJ, Nahorski SR. Characterization of agonist-stimulated incorporation of myo-[$^{3}H$]inositol into inositol phospholipids and -[$^{3}H$]inositol phosphate formation in tracheal smooth muscle. Biochem J. 1989;262:739-746. https://doi.org/10.1042/bj2620739
  8. Claro E, Wallace MA, Lee HM, Fain JN. Carbachol in the presence of guanosine 5'-O-(3-thiotriphosphate) stimulates the breakdown of exogenous phosphatidylinositol 4,5-bisphosphate, phosphatidylinositol 4-phosphate, and phosphatidylinositol by rat brain membranes. J Biol Chem. 1989;264:18288-18295.
  9. Berridge MJ, Irvine RF. Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature. 1984;312:315-321. https://doi.org/10.1038/312315a0
  10. Somlyo AV, Bond M, Somlyo AP, Scarpa A. Inositol trisphosphate-induced calcium release and contraction in vascular smooth muscle. Proc Natl Acad Sci USA. 1985;82:5231-5235. https://doi.org/10.1073/pnas.82.15.5231
  11. Exton JH. Signaling through phosphatidylcholine breakdown. J Biol Chem. 1990;265:1-4.
  12. Billah MM, Anthes JC. The regulation and cellular functions of phosphatidylcholine hydrolysis. Biochem J. 1990;269:281-291. https://doi.org/10.1042/bj2690281
  13. Nishizuka Y. Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science. 1992;258:607-614. https://doi.org/10.1126/science.1411571
  14. Balsinde J, Barbour SE, Bianco ID, Dennis EA. Arachidonic acid mobilization in P388D1 macrophages is controlled by two distinct $Ca^{2+}$-dependent phospholipase A2 enzymes. Proc Natl Acad Sci USA. 1994;91:11060-11064. https://doi.org/10.1073/pnas.91.23.11060
  15. Martinez J, Moreno JJ. Role of $Ca^{2+}$-Independent phospholipase $A_{2}$ on arachidonic acid release Induced by reactive oxygen species. Arch of Biochem and Biophys. 2001;392:257-262. https://doi.org/10.1006/abbi.2001.2439
  16. Ackermann EJ, Conde-Frieboes K, Dennis EA Inhibition of macrophage $Ca^{2+}$-independent phospholipase $A_{2}$ by bromoenol lactone and trifluoromethyl ketones. J Biol Chem. 1995;270:445-450. https://doi.org/10.1074/jbc.270.1.445
  17. Fonteh AN, Bass DA, Marshall LA, Seeds M, Samet JM, Chilton FH. Evidence that secretory phospholipase $A_{2}$ plays a role in arachidonic acid release and eicosanoid biosynthesis by mast cells. J Immunol. 1994;152:5438-5446.
  18. Dole VP, Meinertz H. Microdetermination of long-chain fatty acids in plasma and tissues. J Biol Chem. 1960;235:2595-2599.
  19. Radvanyi Fi, Jordan L, Russo-Marie Fi, Bon C. A sensitive and continuous fluorometric assay for phospholipase $A_{2}$ using pyrene-labeled phospholipids in the presence of serum albumin. Anal Biochem. 1989;177:103-109. https://doi.org/10.1016/0003-2697(89)90022-5
  20. Lee CW, Park DJ, Lee KH, Kim CG, Rhee SG. Purification, molecular cloning, and sequencing of phospholipase C-beta 4. J Biol Chem. 1993;268:21318-21327.
  21. Schmidt M, HUwe SM, Fasselt B, Homann D, RUMenapp U, Sandmann J, Jakobs KH. Mechanisms of phospholipase D stimulation by m3 muscarinic acetylcholine receptors. Eur J Biochem. 1994;225:667-675. https://doi.org/10.1111/j.1432-1033.1994.00667.x
  22. Da Silva A, Arnrani Y, Trifilieff A, Landry Y. Involvement of B2 receptors in the bradykinin-induced relaxation of guinea-pig isolated trachea. Br J Pharmacol. 1995;114:103-108. https://doi.org/10.1111/j.1476-5381.1995.tb14912.x
  23. Lusa S, Myllarniemi M, Volmonen K, Vauhkonen M, Somerharju P. Degradation of pyrene-labelled phospholipids by lysosomal phospholipases in vitro. Dependence of degradation on the length and position of the labelled and unlabelled acyl chains. Biochemical J. 1996;315:947-952. https://doi.org/10.1042/bj3150947
  24. Guidelines on limits of exposure to static magnetic fields. International Commission on Non-Ionizing Radiation Protection. Health Phys. 1994;66:100-106.
  25. Song HS, Park TW, Sohn UD, Shin YK, Choi BC, Kim CJ, Sim SS. The effect of caffeic acid on wound healing in skin-incised mice. Korean J Physiol Pharmacol. 2008;12:343-347. https://doi.org/10.4196/kjpp.2008.12.6.343
  26. Lio YC, Reynolds LJ, Balsinde J, Dennis EA. Irreversible inhibition of $Ca^{2+}$-independent phospholipase $A_{2}$ by methyl arachidonyl fluorophosphonate. Biochim Biophys Acta. 1996;1302:55-60. https://doi.org/10.1016/0005-2760(96)00002-1
  27. Song HS, Park SH, Ko MS, Jeong JM, Sohn UD, Sim SS. Morinda citrifolia Inhibits both cytosolic Ca-dependent phospholipase $A_{2}$ and secretory Ca-dependent phospholipase $A_{2}$. Korean J Physiol Pharmacol. 2010;14:163-167. https://doi.org/10.4196/kjpp.2010.14.3.163
  28. Patruno A, Amerio P, Pesce M, Vianale G, Di Luzio S, Tulli A, Franceschelli S, Grilli A, Muraro R. Reale M. Extremely low frequency electromagnetic fields modulate expression of inducible nitric oxide synthase, endothelial nitric oxide synthase and cyclooxygenase-2 in the human keratinocyte cell line HaCat: potential therapeutic effects in wound healing. Br J Dermatol. 2010;162:258-266. https://doi.org/10.1111/j.1365-2133.2009.09527.x
  29. Clejan S, Ide C, Walker C, Wolf E, Corb M, Beckman B. Electromagnetic field induced changes in lipid second messengers. J Lipid Mediat Cell Signal. 1996;13:301-324. https://doi.org/10.1016/0929-7855(95)00062-3