DOI QR코드

DOI QR Code

Mercury recovery from aqueous solutions by polymer-enhanced ultrafiltration using a sulfate derivative of chitosan

  • Carreon, Jose (Universidad de Guanajuato, Division de Ciencias Naturales y Exactas, Departamento de Quimica) ;
  • Saucedo, Imelda (Universidad de Guanajuato, Division de Ciencias Naturales y Exactas, Departamento de Quimica) ;
  • Navarro, Ricardo (Universidad de Guanajuato, Division de Ciencias Naturales y Exactas, Departamento de Quimica) ;
  • Maldonado, Maria (Centro de Innovacion Aplicada en Tecnologias Competitivas, A.C.) ;
  • Guerra, Ricardo (Centro de Innovacion Aplicada en Tecnologias Competitivas, A.C.) ;
  • Guibal, Eric (Ecole des Mines d'Ales, Laboratoire Genie de l'Environnement Industriel)
  • Received : 2009.08.20
  • Accepted : 2010.06.16
  • Published : 2010.10.25

Abstract

The sulfatation of chitosan, by reaction with chlorosulfonic acid under controlled conditions, allowed increasing the pH range of chitosan solubility. The biopolymer was characterized using FTIR and $^{13}C$-NMR spectroscopy, elemental analysis and titration analysis and it was tested for mercury recovery by polymer enhanced ultrafiltration (PEUF). In slightly alkaline conditions (i.e., pH 8) mercury recovery was possible and at saturation of the polymer the molar ratio $-NH_2$/Hg(II) tended to 2.6. Polymer recycling was possible changing the pH to 2 and the polymer was reused for 3 cycles maintaining high metal recovery. The presence of chloride ions influences metal speciation and affinity for the polymer and "playing" with metal speciation allowed using the PEUF process for mercury separation from cadmium; at pH 11 the formation of hydroxo-complexes of Hg(II) limits it retention. Cake formation reveals the predominant controlling step for permeation flux.

Keywords

References

  1. Arguelles-Monal, W. and Peniche-Covas, C. (1993), "Preparation and characterization of a mercaptan derivative of chitosan for the removal of mercury from brines", Angew. Macromol. Chem., 207(1), 1-8. https://doi.org/10.1002/apmc.1993.052070101
  2. Aroua, M.K., Zuki, F.M. and Sulaiman, N.M. (2007), "Removal of chromium ions from aqueous solutions by polymer-enhanced ultrafiltration", J. Hazard. Mater., 147(3), 752-758. https://doi.org/10.1016/j.jhazmat.2007.01.120
  3. Baba, Y. and Hirakawa, H. (1992), "Selective absorption of palladium(II), platinum(IV) , and mercury(II) on anew chitosan derivative possessing pyridyl group", Chem. Lett., 21(10), 1905-1908. https://doi.org/10.1246/cl.1992.1905
  4. Baba, Y., Matsumura, N., Shiomori, K. and Kawano, Y. (1998), "Highly selective adsorption resin, III. Selective adsorption of mercury(II) on chitosan derivatives from hydrochloric acid", Anal. Sci., 14(4), 687-690. https://doi.org/10.2116/analsci.14.687
  5. Baes, C.F. and Mesmer, R.E. (1976), The hydrolisis of cations, John Wiley & Sons. Inc. New York.
  6. Barron-Zambrano, J., Laborie, S., Viers, P., Rakib, M. and Durand, G. (2004), "Mercury removal and recovery from aqueous solutions by coupled complexation-ultrafiltration and electrolysis", J. Membrane Sci., 229(1-2), 179-186. https://doi.org/10.1016/j.memsci.2003.10.028
  7. Barron-Zambrano, J., Laborie, S., Viers, P.H., Rakib, M. and Durand, G. (2002), "Mercury removal from aqueous solutions by complexation-ultrafiltration", Desalination, 144(1-3), 201-206. https://doi.org/10.1016/S0011-9164(02)00312-0
  8. Baumann, H. and Faust, V. (2000), "Concepts for improved regioselective placement of o-sulfo, n-sulfo, n-acetyl, and n-carboxymethyl groups in chitosan derivatives", Carbohyd. Res., 331(1), 43-57.
  9. Boerlage, S.F.E., Kennedy, M.D., Dickson, M.R., El-Hodali, D.E.Y. and Schippers, J.C. (2002), "The modifiedfouling index using ultrafiltration membranes (mfi-uf): Characterisation, filtration mechanisms and proposedreference membrane", J. Membrane Sci., 197(1-2), 1-21. https://doi.org/10.1016/S0376-7388(01)00618-4
  10. Cho, J.Y., Heuzey, M.C., Begin, A. and Carreau, P.J. (2006), "Viscoelastic properties of chitosan solutions: Effect of concentration and ionic strength", J. Food. Eng., 74(4), 500-515. https://doi.org/10.1016/j.jfoodeng.2005.01.047
  11. Donia, A.M., Atia, A.A. and Elwakeel, K.Z. (2008a), "Selective separation of mercury(II) using magnetic chitosan resin modified with schiff's base derived from thiourea and glutaraldehyde", J. Hazard. Mater., 151(2-3), 372-379. https://doi.org/10.1016/j.jhazmat.2007.05.083
  12. Donia, A.M., Atia, A.A. and Heniesh, A.M. (2008b), "Efficient removal of Hg(II) using magnetic chelating resin derived from copolymerization of bisthiourea/thiourea/glutaraldehyde", Sep. Purif. Technol., 60(1), 46-53. https://doi.org/10.1016/j.seppur.2007.07.045
  13. Fabrega, F.D.M. and Mansur, M.B. (2007), "Liquid-liquid extraction of mercury (II) from hydrochloric acid solutions by aliquat 336", Hydrometallurgy, 87(3-4), 83-90. https://doi.org/10.1016/j.hydromet.2007.02.004
  14. Gamzazade, A., Sklyar, A., Nasibov, S., Shushkov, I., Shaskov, A. and Knirel, Y. (1997), "Structural features of sulfated chitosans", Carbohyd. Polym., 34(1-2), 113-116. https://doi.org/10.1016/S0144-8617(97)00067-2
  15. Ghosh, G. and Bhattacharya, P.K. (2006), "Hexavalent chromium ion removal through micellar enhanced ultrafiltration", Chem. Eng. J., 119(1), 45-53. https://doi.org/10.1016/j.cej.2006.02.014
  16. Goel, J., Kadirvelu, K. and Rajagopal, C. (2004), "Mercury (II) removal from water by coconut shell based activated carbon: Batch and column studies", Environ. Technol., 25(2), 141-153. https://doi.org/10.1080/09593330409355447
  17. Guibal, E. (2004), "Interactions of metal ions with chitosan-based sorbents: A review", Sep. Purif. Technol., 38(1), 43-74. https://doi.org/10.1016/j.seppur.2003.10.004
  18. Guibal, E., Gavilan, K.C., Bunio, P., Vincent, T. and Trochimczuk, A. (2008), "Cyphos IL 101 (tetradecyl (trihexyl)phosphonium chloride) immobilized in biopolymer capsules for Hg(II) recovery from HCl solutions", Sep. Sci. Technol., 43(9-10), 2406-2433. https://doi.org/10.1080/01496390802118970
  19. Guibal, E., Touraud, E. and Roussy, J. (2005), "Chitosan interactions with metal ions and dyes: Dissolved-state vs. Solid-state application", J. Microbiol. Biotechn., 21(6-7), 913-920. https://doi.org/10.1007/s11274-004-6559-5
  20. Hayashi, J. (1993), "Process for preparing a sulfonated chitosan", United States Patent, No. 5,229,504.
  21. Huang, R.H., Du, Y.M., Zheng, L.S., Liu, H. and Fan, L.H. (2004), "A new approach to chemically modified chitosan sulfates and study of their influences on the inhibition of Escherichia coli and Staphylococcus aureus growth", React. Funct. Polym., 59(1), 41-51. https://doi.org/10.1016/j.reactfunctpolym.2003.11.014
  22. Inbaraj, B.S. and Sulochana, N. (2006), "Mercury adsorption on a carbon sorbent derived from fruit shell of Terminalia catappa", J. Hazard. Mater., 133(1-3), 283-290. https://doi.org/10.1016/j.jhazmat.2005.10.025
  23. Jayakumar, R., Nwe, N., Tokura, S. and Tamura, H. (2007), "Sulfated chitin and chitosan as novel biomaterials", Int. J. Biol. Macromol., 40(3), 175-181. https://doi.org/10.1016/j.ijbiomac.2006.06.021
  24. Jeon, C. and Holl, W.H. (2003), "Chemical modification of chitosan and equilibrium study for mercury ion removal", Water Res., 37(19), 4770-4780. https://doi.org/10.1016/S0043-1354(03)00431-7
  25. Juang, R.S. and Chiou, C.H. (2000), "Ultrafiltration rejection of dissolved ions using various weakly basic watersoluble polymers", J. Membrane Sci., 177(1-2), 207-214. https://doi.org/10.1016/S0376-7388(00)00464-6
  26. Juang, R.S. and Chiou, C.H. (2001), "Feasibility of the use of polymer-assisted membrane filtration for brackish water softening", J. Membrane Sci., 187(1-2), 119-127. https://doi.org/10.1016/S0376-7388(01)00330-1
  27. Kadirvelu, K., Goel, J. and Rajagopal, C. (2008), "Sorption of lead, mercury and cadmium ions in multicomponent system using carbon aerogel as adsorbent", J. Hazard. Mater., 153(1-2), 502-507. https://doi.org/10.1016/j.jhazmat.2007.08.082
  28. Kasaai, M.R. (2008), "A review of several reported procedures to determine the degree of n-acetylation for chitin and chitosan using infrared spectroscopy", Carbohyd. Polym., 71(4), 497-508. https://doi.org/10.1016/j.carbpol.2007.07.009
  29. Kawamura, Y., Yoshida, H., Asai, S. and Tanibe, H. (1997), "Breakthrough curve for adsorption of mercury(II) on polyaminated highly porous chitosan beads", Water Sci. Technol., 35(1), 97-105. https://doi.org/10.1016/S0273-1223(97)00119-4
  30. Ku, Y., Wu, M.H. and Shen, Y.S. (2002), "Mercury removal from aqueous solutions by zinc cementation", Waste Manage (Oxford), 22(7), 721-726. https://doi.org/10.1016/S0956-053X(02)00053-3
  31. Kuncoro, E.P., Lehtonen, T., Roussy, J. and Guibal, E. (2003), "Mercury removal by polymer-enhanced ultrafiltration using chitosan as the macroligand", Proceedings of International Biohydrometallurgy Symposium, IBS 2003, Biohydrometallurgy: a sustainable technology in evolution, Athens (Greece), September 13-18. 621-630.
  32. Kuncoro, E.P., Roussy, J. and Guibal, E. (2005), "Mercury recovery by polymer-enhanced ultrafiltration: Comparison of chitosan and poly(ethylenimine) used as macroligand", Sep. Sci. Technol., 40(1-3), 659-684. https://doi.org/10.1081/SS-200042646
  33. Llorens, J., Pujola, M. and Sabate, J. (2004), "Separation of cadmium from aqueous streams by polymer enhanced ultrafiltration: A two-phase model for complexation binding", J. Membrane Sci., 239(2), 173-181. https://doi.org/10.1016/j.memsci.2004.02.034
  34. Marcus, Y. (1997), Ion properties, Marcel Dekker, Inc., New York, NY.
  35. Muslehiddinoglu, J., Uludag, Y., Ozbelge, H.O. and Yilmaz, L. (1998), "Determination of heavy metal concentration in feed and permeate streams of polymer enhanced ultrafiltration process", Talanta, 46(6), 1557-1565. https://doi.org/10.1016/S0039-9140(98)00028-9
  36. Neagu, V., Luca, C., Stefan, S., Stefan, M. and Untea, I. (2007), "Unconventional ion exchange resins retention properties for $Hg^{2+}$ and their ions", React. Funct. Polym., 67(12), 1433-1439. https://doi.org/10.1016/j.reactfunctpolym.2007.07.022
  37. Rivas, B.L., Pooley, S.A., Aceiton, E. and Geckeler, K.E. (2002), "Synthesis, characterization, and properties of a selective adsorbent to mercury(II) ions", J. Appl. Polym. Sci., 85(12), 2559-2563. https://doi.org/10.1002/app.10876
  38. Roberts, G.A.F. (1992), Chitin chemistry, The Macmillan Press, Ltd., London (U.K.).
  39. Rodriguez Pastor, M., Samper-Vidal, E., Varo Galvan, P. and Prats Rico, D. (2003), "Analysis of the variation in the permeate flux and of the efficiency of the recovery of mercury by polyelectrolyte enhanced ultrafiltration (PE-UF)", Desalination, 151(3), 247-251. https://doi.org/10.1016/S0011-9164(02)01017-2
  40. Roussy, J., Van Vooren, M., Dempsey, B.A. and Guibal, E. (2005), "Influence of chitosan characteristics on the coagulation and the flocculation of bentonite suspensions", Water Res., 39(14), 3247-3258. https://doi.org/10.1016/j.watres.2005.05.039
  41. Roussy, J., Van Vooren, M. and Guibal, E. (2004), "Chitosan for the coagulation and flocculation of mineral colloids", J. Disper. Sci. Technol., 25(5), 663-677.
  42. Samczynski, Z. (2006), "Ion exchange behavior of selected elements on Chelex 100 resin", Solvent Extr. Ion. Exc., 24(5), 781-794. https://doi.org/10.1080/07366290600846174
  43. Sorlier, P., Denuziere, A., Viton, C. and Domard, A. (2001), "Relation between the degree of acetylation and the electrostatic properties of chitin and chitosan", Biomacromolecules, 2(3), 765-772. https://doi.org/10.1021/bm015531+
  44. Taha, S., Bouvet, P., Corre, G. and Dorange, G. (1996), "Study and modelisation of some heavy metals removal by ultrafiltration in presence of soluble chitosan", Proceedings of 1st International Conference of the European Chitin Society, Brest (France), September 11-13, 389-398.
  45. Tonini, D.R., Gauvin, D.A., Soffel, R.W. and Freeman, W.P. (2003), "Achieving low mercury concentrations in chlor-alkah wastewaters", Environ. Prog., 22(3), 167-173. https://doi.org/10.1002/ep.670220314
  46. Uludag, Y., Ozbelge, H.O. and Yilmaz, L. (1997), "Removal of mercury from aqueous solutions via polymerenhanced ultrafiltration", J. Membrane Sci., 129(1), 93-99. https://doi.org/10.1016/S0376-7388(96)00342-0
  47. Vieira, R.S., Guibal, E., Silva, E.A. and Beppu, M.M. (2007), "Adsorption and desorption of binary mixtures of copper and mercury ions on natural and crosslinked chitosan membranes", Adsorption, 13(5-6), 603-611. https://doi.org/10.1007/s10450-007-9050-4
  48. Vikhoreva, G., Bannikova, G., Stolbushkina, P., Panov, A., Drozd, N., Makarov, V., Varlamov, V. and Gal'braikh, L. (2005), "Preparation and anticoagulant activity of a low-molecular-weight sulfated chitosan", Carbohyd. Polym., 62(4), 327-332. https://doi.org/10.1016/j.carbpol.2005.05.022
  49. Vongchan, P., Sajomsang, W., Subyen, D. and Kongtawelert, P. (2002), "Anticoagulant activity of a sulfated chitosan", Carbohyd. Res., 337(13), 1239-1242. https://doi.org/10.1016/S0008-6215(02)00098-8
  50. Xing, R.E., Liu, S., Yu, H.H., Guo, Z.Y., Li, Z. and Li, P.C. (2005), "Preparation of high-molecular weight and high-sulfate content chitosans and their potential antioxidant activity in vitro", Carbohyd. Polym., 61(2), 148-154. https://doi.org/10.1016/j.carbpol.2005.04.007
  51. Zeng, J.X., Ye, H.Q. and Hu, Z.Y. (2009), "Application of the hybrid complexation-ultrafiltration process for metal ion removal from aqueous solutions", J. Hazard. Mater., 161(2-3), 1491-1498. https://doi.org/10.1016/j.jhazmat.2008.04.123
  52. Zhang, Z., Zeng, G.M., Huang, J.H., Fang, Y.Y., Xu, K., Qu, Y.H., Yang, C.P. and Li, J.B. (2007), "Removal of zinc ions from aqueous solution using micellar-enhanced ultrafiltration at low surfactant concentrations", Water SA, 33(1), 129-136.

Cited by

  1. Sulfur-Containing Chitin and Chitosan Derivatives as Trace Metal Adsorbents: A Review vol.43, pp.16, 2013, https://doi.org/10.1080/10643389.2012.671734
  2. Chitosan and Its Derivatives as Highly Efficient Polymer Ligands vol.21, pp.12, 2016, https://doi.org/10.3390/molecules21030330
  3. Hg(II) removal from HCl solutions using a tetraalkylphosphonium ionic liquid impregnated onto Amberlite XAD-7 vol.131, pp.22, 2014, https://doi.org/10.1002/app.41086
  4. -sulfated chitosan films pp.00218995, 2019, https://doi.org/10.1002/app.47128
  5. Polyethersulfone (PES) ultrafiltration (UF) membranes loaded with silver nitrate for bacteria removal vol.2, pp.1, 2010, https://doi.org/10.12989/mwt.2011.2.1.025
  6. Synthesis and study of sorption properties of polyvinyl alcohol (PVA)-based hybrid materials vol.144, pp.None, 2010, https://doi.org/10.1016/j.reactfunctpolym.2019.104364