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A Frozen Time Receding Horizon Control for a Linear Discrete
Time-Varying System

R
(Myung-Hwan Oh and Jun-Ho Oh)

Abstract: In the case of a linear time-varying system, it is difficult to apply the conventional stability conditions of RHC (Receding
Horizon Control) to real physical systems because of computational complexity comes from time-varying system and backward
Riccati equation. Therefore, in this study, a frozen time RHC for a linear discrete time-varying system is proposed. Since the
proposed control law is obtained by time-invariant Riccati equation solved by forward iterations at each control time, its stability can
be ensured by matrix inequality condition and the stability condition based on horizon for a time-invariant system, and they can be
applied to real physical systems effectively in comparison with the conventional RHC.
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L. INTRODUCTION

It is well known that the condition of the final state weighting
matrix is important for the stability of receding horizon control (RHC)
and the terminal equality condition [1,2] and the matrix inequality
condition [3,4] were proposed. The matrix inequality condition is
more flexible and realizable than the terminal equality condition but
has some problems resulting from their complexity and the high value
of the final state weighting matrix.

To search the easier and more flexible stability conditions, the
stability conditions based on horizon size, which has been considered

as an altemative important design factor of RHC, were proposed [5-7].

Since the hotizon based stability conditions extend the possible range
of the final state weighting matrix by increasing the horizon size, they
solved some problems of the matrix inequality condition resulting
from high vatue of the final state weighting matrix.

In the case of a time-invariant system, the horizon based conditions
in [5,6] can guarantee the stability of any physical system controlied
by RHC easily by solving forward Riccati equation while increasing
horizon size until the control law satisfies the specific condition during
control. However, in the case of a time-varying system, both the
matrix inequality condition and the horizon based condition need
many control efforts and re-calculations comes from complexities of a
time-varying system and backward Riccati equation. Specially, in the
case of the horizon based condition [6], if a selected horizon size does
not satisfy the stability condition, we must change the horizon size and
the control law must be re-calculated from initial stage because of
backward Riccati equation. And thus, if the control law can be
obtained by solving forward Riccati equation for a time-varying
system, the horizon based stability condition can be applied easily like
the case of RHC for a time-invariant system.

Therefore, in this study, a frozen time RHC for a linear discrete
time-varying system is proposed. Since the proposed control law can
be obtained by time-invariant Riccati equation solved by forward
iterations, its stability can be ensured by the matrix inequality
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condition and the horizon based stability condition for a linear time-
invariant system, and they can be applied to real physical systems
effectively in comparison with the conventional RHC.

A frozen time RHC for a discrete time-varying system is introduced
in chapter I and the newly proposed method to check the stability of
the frozen time RHC are described in chapter III. And the proposed
methods are verified by a simple numerical simulation in chapter I'V.
Finally, conclusion and proposals for future works are discussed in the
final chapter.

II. AFROZEN TIME RHC FOR A LINEAR
DISCRETE SYSTEM
Consider a linear discrete time-varying system as given below.

x(t +1) = A@)x(?) + B(t)u(?) m

where x(¢t) e R", u(t)e R", anda costfunction

1+7-1

JE@,tt+T)= 3 [x"()0@)x () +u” HREu()]

i=t

+x' (t+T)Q,(t+T)x(t +T)
where 0()=C"()C()20, R()>0, and Q,()20. In this study,

matrices A4(), B(), O(), R(), and 0,() are assumed fo be

bounded.
RHC law at the current time ¢ can be calculated by minimizing
the cost function (2) about the input «(r) and is given by

W (@) =-R'OB" O+ K¢ +1,t+T)
x BOR' ()BT (O] 'K (¢ +1,¢ + T)A()x(¢)

where K(z,0) satisfies

K(z,0)= A" (1)K (z +1,0)[I + B(r)R'(r)B" (z)

¢ @
xK(r+1,0)] A7)+ Q(r), 7<0
with the boundary condition
K(@+T,t+T)=Q,(t+T). ®)
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The stability of the system (1) with RHC law (3) depends on the
final state weighting matrix 0,(0)20 and if it satisfies non-
increasing monotonicity K(o,o +1)- K(c,0) <0, the stability of
the time-varying system (1) with RHC law (3) can be ensured by the
matrix inequality condition regardless of the horizon T. However, if
0,(0)20 satisfies non-decreasing monotonicity K(c,o +1) -
K(o,0)20, its stability can not be guaranteed by the matrix

inequality condition and depends on the horizon. It is explained in
Theorem 1 [6].

Theorem 1 [6]: Assume that the pairs (A(),B()) and (A("),
C()) in (1) are uniformly completely controllable and observable
respectively. If 0,(c)>0 satisfies K(o,0+1)-K(c,0)20 and
K(o,0+2)-2K(0,0 +)+K(0,0)<0 for all 20, and
K(t,t+T) for T=71+2 (/=max (I./) which are needed in

uniform complete controllability and observability) satisfies the
following inequality

Kt t+T)-K(t,t+T-1)< Q1) ©)
or its sufficient condition
K(t,t+T)£Qf(t)+TQ(t) , @)

then the system (1) with control law (3) is uniformly asymptotically
stable. u

Here, [ andi, are positive values and they satisfies o7 <

Wtt+l)y<o,l and e,/ <G(t,t+1)<a, (@, a,, a and
@, are positive constants) where W(r,r+1) and G(t,t+1) are
controllability and observability grammian respectively.

Tofind T globally satisfying (6) for all time, many control efforts
are needed in a time-varying system because the control law (3) is
obtained by backward Riccati equation (4) and two other Riccati
equations must be solved at the same time to obtain K (7, +7) and
K(t,t+T-1) in (6). That is, to obtain K(¢,t+7T) and K(t,f+
T -1), they are solved from initial conditions K(z+7,t+7T) and
K(@+T-1t+T-1) respectively, in each Riccati equation, and
K(t,t +T) cannot be obtained from K(s,+ + T —1) continuously in
the same Riccati equation. Also, if a selected horizon T does not
satisfy (6), we must change the horizon size and all solving process is
repeated from initial stage in another Riccati equation.

For example, if a horizon size 7, is selected, K(7,z+7)) is
obtained by backward Riccati equation (4) with the initial condition
K(@+T.,t+T) and it is solved by the following sequence
K@+T -1Lt+T), K@+T -2,t+T), ..., K¢t+Lt+T), and
finally, K(t,t+7)) is obtained and it is checked by (6). If
K(t,t+T,) does not satisfy (6), we must repeat this process for other
increased horizon T,(7, >7)). Since K(t,¢t+7,) can not be
obtained from previous result K(r,r +7), K(t,t+T,) is calculated
from new initial condition K(¢+7,,¢+7,) and solving process is
repeated like the above process K(r+7T,-1t+T,), K(t+T,—
2t+1), ..., Kt+1L,t+T,), and K(t,t+7T,).

Therefore, if backward Riccati equation (4) can be solved by

forward iterations, 7 satisfying (6) is obtained conveniently while
increasing 7 until K(t,t+7) and K(t,t+T 1) satisfies (6) like
the case of RHC for a time-invariant system [5,6], and all problems of
the inequality (6) will be solved. That is, if K(+,r+7) can be
obtained from the initial condition K(z,t), K(t,t +T) is obtained
from K(t,t+ 7T —1) continuously in the same Riccati equation and it
does not need to repeat all calculation process from initial stage when
the horizon size is changed.

To meet with this problem, the frozen time RHC for a discrete time-
varying system is proposed and it is applied for guaranteeing the
stability of a linear discrete time-varying system. The frozen time
RHC law is explained as follows.

If system and input matrices A(s) and B(¢) are fixed attime »,
the system (1) at time ¢ can be expressed as the time-invariant
system

x(t+1)= Ax(r)+ Bu(r) ®)

where 4, and B, are A(f) and B(r) respectively. If the future
states of the time-invariant system (8) are considered from ¢ to
t+T inthe cost function (2), the cost function (2) changes to

t+T-1
JE,Lt+Ty= Y [x ()Qx() +u" (HRui)] )
+x"(t+T)Qx(t+T)
where O, = Q(?), R, =R(?), and Q, =Q,(#), anditisthe same as

the cost function of RHC for a time-invariant system. The frozen time
RHC law at the current time ¢ can be calculated by minimizing the
cost function (9) about the input #(#) and is given by

w (t) = _RtilBtT[I + Kt(T _I)BthilBtT]il

(10)
% K (T = 1) 4 x(f)

where K, (r) satisfies
K(+)=AK @I +BR'BIK,(D]"'4+0, (D
with the boundary condition
K, (0)=0,. (12)

Then the closed-loop system of the system (1) with the frozen time
RHC law (10) is given below.

x(t+1)=[{4 -BR'B'[I+K(T-1)BR'B'T"
x KT ~1)4,]x(0)
The frozen time RHC law at each control time is obtained by

assuming that the time-varying system is fixed from the current
control time ¢ to the prediction time or horizon size ¢+ 7, and the

13)

complex RHC law for a time-varying system is replaced by the
simple RHC law for a time-invariant system.

The control law (10) is the frozen time RHC law for the system (1)
at control time ¢ and it is equivalent to RHC for the time-invariant
system (8), which is the fixed system of the system (1) at time 1.
Since the above process is repeated at each control time, the frozen
time RHC laws for the system (1) are composed of time-invariant
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RHC law at each control time and its control law K,(T) is obtained
by solving forward Riccati equation (11).

IIL. THE STABILITY OF THE FROZEN TIME RHC

Since the frozen time RHC law is obtained by the time-invariant
Riccati equation at every control time, its stability can be also
guaranteed by the stability conditions of time-invariant RHC with
additional conditions of design matrices Q(z), R(r), and 0,0 It
is summarized in Theorem 2.

Theorem 2: Assume that the pairs (A(-),B()) and (4(),C()
in (1) are uniformly completely controllable and observable, and
0,20 satisfies K,(1)-K,(0)>0 and K,(2)-2K,(1)+K,(0)
<0 for all r>0. If K(T) for T>1+2 satisfies K,(T)-
K (T-1)<Q(t) orequivalently,

ATOK, (T -DII + BOR (OB (K (T -1)]"

(14)
xA() - K,(T-1)<0
and the following inequalities
H@)-H(t-1)
{Q(t) A0]_[oe-) 4¢-n]_ (s
A -S| |4A¢-1) -S¢-1)|
where S(¢)=B()R™'(1)B"(f) and
9,0-0,t-D<0 (16)

are satisfied for all time ¢>1, then the system (1) with control law
(10) is uniformly asymptotically stable.

Proof: This theorem can be proved by Lyapunov stability theorem.
Consider the closed-loop system (13). The Lyapunov function is
defined as V(t,x() =x" (K, (T -Dx(f). Since Q() and
R(-) arebounded, K,(T) isalso bounded.

V{E+1L,x(t+1) -V (t,x(0)
=x"(t + DK, (T - Dx(t +1) - x" (OK,_, (T - D)x(z)
=x"(O[A"(OK(T - DA~ A" OK,(T - 1)
+B(OR'(0)B" (HK,(T -1))"' BOR™' (1) B (1)K (T -1)
- M) - K, (T -D)]x(r)
=x" (O[K,(T) - K, (T ~1)- 0(t) - M(O))x(r)
=x"OK () - KT -1)+K(T-1)-K, (T-1)
- Q) - M@)]x(¥)
where  M(r) = A" (DK (T ~-DB@E)[R(t) + B" (1)K (T -DBE)] ' R(2)
<[R(®)+ B (OK,(T -1)BO] ' B" (1)K, (T ~1)A() and M) > 0.
In order to guarantee the Lyapunov stability theorem, V(r+1,
x@+1D))-V(t,x(t) < —al (o is a positive constant) must be
satisfied and it can be expressed conservatively via the inequalities,
K@M -KT-D<0@¢), KT-D-K_(T-1)<0

The former inequality, K, (T)-K,(T~-1)<Q(f) is satisfied
because it is equivalent to the inequality (14). The other inequality
K(T-1)-K,_(T-1)<0 can be satisfied by the comparison

Mo - 22 - AlA=Sg ==X H 16 2, Al 2 & 2010. 2

theorem for matrix Riccati difference equation in [8] if X,(0)-
K, ,(0)<0 and the inequality (15) are satisfied. Since
K (0)=0,(»), if the inequalities (15) and (16) are satisfied,
K(T-1D)-K _(T-1)<0 is also satisfied and the closed-loop
systemn (13) is uniformly asymptotically stable. , |
The stability of the closed-loop system (13) is guaranteed by the
time-invariant RHC stability condition (14) at every control time ¢
with the additional conditions (15) and (16). If T satisfies (14) for
all time ¢ >0, all of the eigenvalues of the closed-loop system (13)
are placed in the unit circle and it is pointwise stable. Also, since (15)
and (16) are the condition for design matrices, it is needed to select
O(n, R(t), and Q,(r) relevantly. Therefore, the stability of frozen

time RHC for a linear discrete time-varying system can be ensured by
the time-invariant RHC stability condition and relevant selection of
the design matrices.

The stability condition (14) is the time-invariant version of (6) and
T satisfying (14) at each time ¢ can be obtained easily by solving
forward Riccati equation (11) while increasing 7' until X, (T)
satisfies (14) differing from the conventional RHC for a time-varying
system, that is, calculation is proceeded by the following sequence
K,0), K0, K2, .., K(T-1), and finally K.(T) is
obtained. Therefore, the inequality (14) is checked at each step and if
(14) is not satisfied at a horizon 7;, forward iterations are continued

from K,(7}) in the same Riccati equation without repeating the
calculation process from initial condition X, (0).

Theorem 2 is somewhat simple condition than Theorem 1 but it is
not easy to select O (¢) satisfying the assumptions in Theorem 2. If

the horizon size is increased sufficiently, it means that the solution of
Riccati equation X,(T') converges to the optimal LQ solution X,,
thatis, K,(T+1)—K,(T) closes to zero. Therefore, although a final
state weighting matrix Q,(s) satisfies non-decreasing monotonicity
K.(1)-K,(0)=0 at initial time and it remains for all time, there
exists a horizon size T, safisfying K,(T; +2)-2K/(T, +1)+
K,(T,) <0. Thisrelation is explained in Lemma 1 and 2.

Lemma 1 [6]: If an arbitrary Q, (1) >0 satisfies K,(1)- K,(0)
20, then there exists a horizon size 7, >0 which satisfies

KT, +2) - 2K(T, + )+ K,(T,) <O0.

[ ]

The inequality in Lemma 1 also has monotonicity and it is showed in
Lemma 2

Lemma 2 [9]: If a horizon 7, satisfies the following

monotonicity, K, (T, +2) - 2K, (T, + D+ K, (T;)<0. then the
inequality K,(T+2)-2K,(T+1)+K,(T)<0 is also satisfied for all
T>T,. |
Therefore, Q,(z) in the inequality (14) and its assumptions in
Theorem 2 can be replaced by K,(7,) and it explained in Remark 1.
Remark 1: Assume that the pairs (A(),B()) and (A(),C()
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in (1) are uniformly completely controllable and observable
respectively, and K,(T;) which T>T, 20 satisfies K(T, +1)~
K(T)20 and KT, +2)-2K(T, +D+K,(T,)<0 for all
t20. If K(T) for T>/+2 satisfies the inequalities (14) and
(15) for all time 7>1, then the system (1) with control law (10) is
uniformly asymptotically stable for an arbitrary Q,()>0 satisfying
(16). n

T, and T satisfying the assumptions in Remark 1 can be
obtained simultaneously while increasing horizon until it satisfies the
assumption in the middle of finding the control law.

On the other hand, if Q,(t) does not satisfy non-decreasing
monotonicity X,(1)~K,(0)>0 but satisfies non-increasing mono-
tonicity K,(1)-K,(0)<0, the time-invariant matrix inequality
condition [10] for RHC can be applied to ensure the pointwise
stability of the closed-loop system (13) instead of the time-varying
matrix inequality condition. It is summarized in Theorem 3.

Theorem 3: Assume that the pairs (A(), B(-)) and (A4(),C())
in (1) are uniformly completely controllable and observable
respectively. If O, (r)>0 satisfies

A" QO + BOR™ (0)B" (NQ, ()]

a7
XA+ Q1) -0, (1) <0

and inequalities (15) and (16) are satisfied, then the system (1) with
control law (10) is uniformly asymptotically stable forall 7>7+2. H
The inequality (17) is the matrix inequality condition for a linear
discrete time-invariant system [10] and it can replace the horizon
based pointwise stability condition (14) because the matrix inequality
condition (17) satisfies K, (T)-K,(T-1)<Q(#) in the proof of
Theorem 2 sufficiently. Since the matrix inequality condition for a
time-invariant system (17) is simpler than the time-varying matrix
inequality condition, it can be applied to real physical system easily.

IV. NUMERICAL SIMULATION

A numerical example for the stability of frozen time RHC is
executed using the following system

5 3 0 l+e" 0
A(t)—LJrzg, 5} B(t)=[4t}Q(t):{ 0 3}16:1(18)

Then the inequality (15)

e’ e 0 0 2 —e™)
0 00
H)-H(-1)= <0 (19
®O-H¢-1 0 0 0 (19
2e"—e’) 0 0 -32t-16

is satisfied for all ¢>1 and if Q/(t):[g (ﬂ it also satisfies the
inequality (16). 7, and 7 satisfying Lemma 1 and the inequality

(14) at every control time is obtained easily by increasing the horizon
from zero, and 7,22 and T>6 satisfy Lemma 1 and the

inequality (14) for all r. Therefore, the minimum horizon size which

State x(1)
10
8 o TS
& S
N 1=6 -
-
) ‘\ . o “‘f
\ S - - -
0
-2
-4
-6
-
-16
0 2 & & B
State x(2)
10
8 et e
& Teh
4
2
a
2 . - - -
" bt ol SRR
. / . -
1'~'
-&
-B
-10 e
8
0 2 s 6 g~

8 1, 7o) uhE Ao A3k

Fig. 1. Regulation results according to horizon size.

can guarantee the stability of the closed loop system (13) is T =6.
O() and R(1) satisfying the inequality (15) is selected at each
control time.

To prove this result, the regulation control is exectuted when the
horizon size T=3 and T =6 for the system (18) with the frozen
time control law. Initial state x(0)=[5 -8] and the results are

showed in Fig. 1. Since the stability of system (18) with the frozen
time control law is ensured when T >6 by the stability condition
(14), the closed-loop system is stable when 7 =6 but it is not stable
when the horizon size 7 =3 because its stability is not guaranteed
when 7 <6.

In the case of the conventional RHC for a time-varying system,
since Riccati equation is solved by backward iterations and horizon
size can not be changed during calculating control law, more control
efforts are needed than frozen time RHC, that is, K(s,r+T) is
obtained from K(:+7,t+7T), and also, both K(t,/+T) and
K(t,t +T —1) are must be calculated simultaneously.

V. CONCLUSION

As a new control strategy, the frozen time RHC and its new stability
conditions are introduced in this study. It has been difficult to apply the
conventional stability conditions of RHC for a time-varying system to
a real control problem because of time-varying complexity and
backward Riccati equation. Since the proposed control law is obtained
by time-invariant Riccati equation solved by forward iterations at each
control time, its stability can be ensured by the matrix inequality
condition and the stability condition based on horizon for a linear
time-invariant system, and they can be applied to real physical
systems effectively in comparison with the conventional RHC.
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