Effect of Water Extract of Schisandra Chinensis on Osteoclast Differentiation

오미자 물 추출물이 파골세포 분화에 미치는 영향

  • Lee, Yan (Department of Anatomy, School of Medicine, School of Medicine, Wonkwang University) ;
  • Lee, Ho-Sub (Hanbang Body-fluid Research Center, College of Oriental Medicine, School of Medicine, Wonkwang University) ;
  • Jang, Sung-Jo (Department of Neurosurgery, School of Medicine, School of Medicine, Wonkwang University) ;
  • Song, Jeong-Hoon (Plastic & Rconstructive Surgery, School of Medicine, Wonkwang University)
  • 리연 (원광대학교 의과대학 해부학교실) ;
  • 이호섭 (원광대학교 한의과대학 한방체액연구센터) ;
  • 장성조 (원광대학교 의과대학 신경외과학교실) ;
  • 송정훈 (원광대학교 의과대학 성형외과학교실)
  • Received : 2010.09.14
  • Accepted : 2010.10.11
  • Published : 2010.10.25

Abstract

Bone maintains its homeostasis through balance between bone resorbing osteoclasts and bone forming osteoblasts. Thus, unusual balance between osteoclasts and osteoblasts leads to pathological bone diseases, such as osteoporosis, rheumatoid arthritis, autoimmune arthritis, periodontitis. Schisandra chinensis well known traditional herbal has been used for treatment of diseases in China, Korea, Japan, andothers. Recently, research studies have demonstrated that the lignans found in Schisandra chinensis stimulate osteoblasts and suggest that it may be helpful against osteoporosis. However, the inhibitory effect of water extract of Schisandra chinensis on osteoclast differentiation remains largely unknown. In this study, Water extract of Schisandra chinensis markedly suppressed RANKL-induced osteoclast differentiation in cultures of BMMs without cytotoxicity. The mRNA expression of c-Fos, NFATc1, and TRAP induced by RANKL was inhibited by water extract of Schisandra chinensis. It also suppressed c-Fos and NFATc1 protein expression. Taken together, these results suggest that water extract of Schisandra chinensis has the potential to serve as a treatment of bone disease such as osteoporosis.

Keywords

References

  1. Rodan, G.A., Martin, T.J. Therapeutic approaches to bone diseases. Science 289(5484):1508-1541, 2000. https://doi.org/10.1126/science.289.5484.1508
  2. Delmas, P.D. The use of bisphosphonates in the treatment of osteoporosis. Curr Opin Rheumatol 17(4):462-466, 2005.
  3. Roodman, G.D. Regulation of osteoclast differentiation. Ann N Y Acad Sci 1068: 100-109, 2006. https://doi.org/10.1196/annals.1346.013
  4. Teitelbaum, S.L., Ross, F.P. Genetic regulation of osteoclast development and function. Nat Rev Genet 4(8):638-649, 2003. https://doi.org/10.1038/nrg1122
  5. Takayanagi, H. Osteoimmunology: shared mechanisms and crosstalk between the immune and bone systems. Nat Rev Immunol 7(4):292-304, 2007. https://doi.org/10.1038/nri2062
  6. Kwak, H.B., Kim, J.H., Kim, D.J., Kwon, Y.M., Oh, J.M., Kim, Y.K. Effect of water extract of deer antler in osteoclast differentiation. Korean J Oriental Physiology & pathology 22: 891-895, 2008.
  7. Guo, L.Y., Hung, T.M., Bae, K.H., Shin, E.M., Zhou, H.Y., Hong, Y.N., Kang, S.S., Kim, H.P., Kim, Y.S. Anti-inflammatory effects of schisandrin isolated from the fruit of Schisandra chinensis Baill. Eur J Pharmacol 591(1-3):293-299, 2008. https://doi.org/10.1016/j.ejphar.2008.06.074
  8. Wagner, E.F., Karsenty, G. Genentic control of skeletal development. Curr Opin Genet 11: 527-532, 2001. https://doi.org/10.1016/S0959-437X(00)00228-8
  9. Wagner, E.F., Karsenty, G. Reaching a genetic and molecular understanding of skeletal development. Cell 4: 389-406, 2002.
  10. Hancke, J.L., Brugos, R.A., Ahumada, F. Schisandra chinensis (Turcz.) Baill. Fitoterapia 70: 451-471, 1999. https://doi.org/10.1016/S0367-326X(99)00102-1
  11. Wagner, H., Bauer, R. Chinese drug monographs and analysis: Fructus Schisandrae. Wuweizi 1: 1-8, 1996.
  12. Caichompoo, W., Zhang, Q.Y., Hou, T.T., Gao, H.J., Qin, L.P., Zhou, X.J. Optimization of extraction and purification of active fractions from Schisandra chinensis (Turcz.) and its osteoblastic proliferation stimulating activity. Phytother Res 23(2):289-292, 2009. https://doi.org/10.1002/ptr.2585
  13. Nishikawa, M., Akatsu, T., Katayama, Y., Yasutomo, Y., Kado, S., Kugal, N., Yamamoto, M., Nagata, N. Bisphosphonates act on osteoblastic cells and inhibit osteoclast formation in mouse marrow cultures. Bone 18: 9-14, 1996. https://doi.org/10.1016/8756-3282(95)00426-2
  14. Khosla, S., Burr, D., Cauley, J., Dempster, D.W., Ebeling, P.R., Felsenberg, D., Gagel, R.F., Gilsanz, V., Guise, T., Koka, S., McCauley, L.K., McGowan, J., McKee, M.D., Mohla, S., Pendrys, D.G., Raisz, L.G., Ruggiero, S.L., Shafer, D.M., Shum, L., Silverman, S.L., Van Poznak, C.H., Watts, N., Woo, S.B., Shane, E. Bisphosphonate-associated osteonecrosis of the jaw: report of a task force of the American Society for Bone and Mineral Research. J Bone Miner Res 22: 1479-1491, 2007. https://doi.org/10.1359/jbmr.0707onj
  15. Stacchiotti, A., Li Volti, G., Lavazza, A., Rezzani, R.. Rodella, L.F. Schisandrin B stimulates a cytoprotective response in rat liver exposed to mercuric chloride. Food Chem Toxicol 47(11):2834-2840, 2009. https://doi.org/10.1016/j.fct.2009.09.003
  16. Min, H.Y., Park, E.J., Hong, J.Y., Kang, Y.J., Kim, S.J., Chung, H.J., Woo, E.R., Hung, T.M., Youn, U.J., Kim, Y.S., Kang, S.S., Bae, K., Lee, S.K. Antiproliferative effects of dibenzocyclooctadiene lignans isolated from Schisandra chinensis in human cancer cells. Bioorg Med Chem Lett 18(2):523-526, 2008. https://doi.org/10.1016/j.bmcl.2007.11.082
  17. Boyle, W.J., Simonet, W.S., Lacey, D.L. Osteoclast differentiation and activation. Nature 423: 337-342, 2003. https://doi.org/10.1038/nature01658
  18. Takayanagi, H. Osteoimmunology: shared mechanisms and crosstalk between the immune and bone systems. Nat Rev Immunol 7(4):292-304, 2007. https://doi.org/10.1038/nri2062
  19. Takayanagi, H., Kim, S., Koga, T., Nishina, H., Isshiki, M., Yoshida, H., Saiura, A., Isobe, M., Yokochi, T., Inoue, J., Wagner, E.F., Mak, T.W., Kodama, T., Taniguchi, T. Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev Cell 3: 889-901, 2002. https://doi.org/10.1016/S1534-5807(02)00369-6
  20. Fleischmann, A., Hafezi, F., Elliott,C., Reme, C.E., Ruther, U., Wagner, E.F. Fra-1 replaces c-Fos-dependent functions in mice. Genes Dev 14: 2695-2700, 2000. https://doi.org/10.1101/gad.187900
  21. Takayanagi, H., Kim, S., Koga, T., Nishina, H., Isshiki, M., Yoshida, H., Saiura, A., Isobe, M., Yokochi, T., Inoue, J., Wagner, E.F., Mak, T.W., Kodama, T., Taniguchi, T. Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev Cell 3: 889-901, 2002. https://doi.org/10.1016/S1534-5807(02)00369-6
  22. Darnay, B.G., Haridas, V., Ni, J., Moore, P.A., Aggarwal, B.B. Characterization of the intracellular domain of receptor activator of NF-kappaB (RANK). Interaction with tumor necrosis factor receptor-associated factors and activation of NF-kappaB and c-Jun N-terminal kinase. J Biol Chem 273: 20551-20555, 1998. https://doi.org/10.1074/jbc.273.32.20551
  23. Wong, B.R., Josien, R., Lee, S.Y., Vologodskaia, M., Steinman, R.M., Choi, Y. The TRAF family of signal transducers mediates NF-$\kappa B$ activation by the TRANCE receptor. J Biol Chem 273: 28355-28359, 1998. https://doi.org/10.1074/jbc.273.43.28355
  24. Takayanagi, H., Kim, S., Koga, T., Nishina, H., Isshiki, M., Yoshida, H., Saiura, A., Isobe, M., Yokochi, T., Inoue, J., Wagner, E.F., Mak, T.W., Kodama, T., Taniguchi, T. Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev Cell 3: 889-901, 2002. https://doi.org/10.1016/S1534-5807(02)00369-6
  25. Partington, G.A., Fuller, K., Chambers, T.J., Pondel, M. Mitf-PU. 1 interactions with the tartrate-resistant acid phosphatase gene promoter during osteoclast differentiation. Bone 34: 237-245, 2004. https://doi.org/10.1016/j.bone.2003.11.010