DOI QR코드

DOI QR Code

Mechanical Stretch-Induced Protection against Myocardial Ischemia-Reperfusion Injury Involves AMP-Activated Protein Kinase

  • Hao, Jia (Institute of Biomedical and Pharmaceutical Technology (IBPT), Fuzhou University) ;
  • Kim, Hun-Sik (Department of Pharmacology, College of Medicine, BK21 Chungbuk Biomedical Science Center, School of Medicine, Chungbuk National University) ;
  • Choi, Woong (Department of Pharmacology, College of Medicine, BK21 Chungbuk Biomedical Science Center, School of Medicine, Chungbuk National University) ;
  • Ha, Tae-Sun (Department of Pediatrics, College of Medicine, BK21 Chungbuk Biomedical Science Center, School of Medicine, Chungbuk National University) ;
  • Ahn, Hee-Yul (Department of Pharmacology, College of Medicine, BK21 Chungbuk Biomedical Science Center, School of Medicine, Chungbuk National University) ;
  • Kim, Chan-Hyung (Department of Pharmacology, College of Medicine, BK21 Chungbuk Biomedical Science Center, School of Medicine, Chungbuk National University)
  • Published : 2010.02.28

Abstract

AMP-activated protein kinase (AMPK) protects various tissues and cells from ischemic insults and is activated by many stimuli including mechanical stretch. Therefore, this study investigated if the activation of AMPK is involved in stretch-induced cardioprotection (SIC). Intraventricular balloon and aorto-caval shunt (ACS) were used to stretch rat hearts ex vivo and in vivo, respectively. Stretch preconditioning reduced myocardial infarct induced by ischemia-reperfusion (I/R) and improved post-ischemic functional recovery. Phosphorylation of AMPK and its downstream substrate, acetyl-CoA carboxylase (ACC) were increased by mechanical stretch and ACC phosphorylation was completely blocked by the AMPK inhibitor, Compound C. AMPK activator (AICAR) mimicked SIC. Gadolinium, a blocker of stretch-activated ion channels (SACs), inhibited the stretch-induced phosphorylation of AMPK and ACC, whereas diltiazem, a specific L-type calcium channel blocker, did not affect AMPK activation. Furthermore, SIC was abrogated by Compound C and gadolinium. The in vivo stretch induced by ACS increased AMPK activation and reduced myocardial infarct. These findings indicate that stretch preconditioning can induce the cardioprotection against I/R injury, and activation of AMPK plays an important role in SIC, which might be mediated by SACs.

Keywords

References

  1. Das DK, Maulik N. Cardiac genomic response following preconditioning stimulus. Cardiovasc Res. 2006;70:254-263. https://doi.org/10.1016/j.cardiores.2006.02.023
  2. Shintani-Ishida K, Nakajima M, Uemura K, Yoshida K. Ischemic preconditioning protects cardiomyocytes against ischemic injury by inducing GRP78. Biochem Biophys Res Commun. 2006;345:1600-1605. https://doi.org/10.1016/j.bbrc.2006.05.077
  3. Kim YH, Kim CH, Kim GT, Kim IK, Park JW, Kim MS. Involvement of adenosine in cardioprotective effect of catecholamine preconditioning in ischemia-reperfused heart of rat. Korean J Physiol Pharmacol. 1998;2:753-761.
  4. Jiao JD, Garg V, Yang B, Hu K. Novel functional role of heat shock protein 90 in ATP-sensitive $K^{+}$ channel-mediated hypoxic preconditioning. Cardiovasc Res. 2008;77:126-133.
  5. Ovize M, Kloner RA, Przyklenk K. Stretch preconditions canine myocardium. Am J Physiol Heart Circ Physiol. 1994;266:137-146. https://doi.org/10.1152/ajpheart.1994.266.1.H137
  6. Gysembergh A, Margonari H, Loufoua J, Ovize A, Andre-Fouet X, Minaire Y, Ovize M. Stretch-induced protection shares a common mechanism with ischemic preconditioning in rabbit heart. Am J Physiol Heart Circ Physiol. 1998;274:955-964. https://doi.org/10.1152/ajpheart.1998.274.3.H955
  7. Mosca SM. Cardioprotective effects of stretch are mediated by activation of sarcolemmal, not mitochondrial, ATP-sensitive potassium channels. Am J Physiol Heart Circ Physiol. 2007;293:1007-1012. https://doi.org/10.1152/ajpheart.00051.2007
  8. Nakagawa C, Asayama J, Katamura M, Matoba S, Keira N, Kawahara A, Tsuruyama K, Tanaka T, Kobara M, Akashi K, Ohta B, Tatsumi T, Nakagawa M. Myocardial stretch induced by increased left ventricular diastolic pressure preconditions isolated perfused hearts of normotensive and spontaneously hypertensive rats. Basic Res Cardiol. 1997;92:410-416. https://doi.org/10.1007/BF00796215
  9. Force T, Michael A, Kilter H, Haq S. Stretch-activated pathways and left ventricular remodeling. J Card Fail. 2002;8:351-358. https://doi.org/10.1054/jcaf.2002.129272
  10. Pan J, Fukuda K, Saito M, Matsuzaki J, Kodama H, Sano M, Takahashi T, Kato T, Ogawa S. Mechanical stretch activates the JAK/STAT pathway in rat cardiomyocytes. Circ Res. 1999;84:1127-1236. https://doi.org/10.1161/01.RES.84.10.1127
  11. Wamel AJ, Ruwhof C, Valk-Kokshoom LE, Schrier PI, Laarse A. The role of angiotensin II, endothelin-1, and transforming growth factor as autocrine/paracrine mediators of stretch-induced cardiomyocyte hypertrophy. Mol Cell Biochem. 2001;218:113-124. https://doi.org/10.1023/A:1007279700705
  12. Smith MA, Moylan JS, Reid MB. Mechanical signal transduction in glucose transport of murine extensor digitorum longus (EDL) muscle. FASEB J. 2007;21:94-98.
  13. Rubin LJ, Magliola L, Feng X, Jones AW, Hale CC. Metabolic activation of AMP-kinase in vascular smooth muscle. J Appl Physiol. 2004;10:1152-1175.
  14. Kahn BB, Alquier T, Carling D Hardie DG. AMP-activated protein kinase: Ancient energy gauge provides clues to modern understanding of metabolism. Cell Metabolism. 2005;1:15-25. https://doi.org/10.1016/j.cmet.2004.12.003
  15. Hardie DG, Salt IP, Hawley SA, Davies SP. AMP-activated protein kinase : an ultrasensitive system for monitoring cellular energy charge. Biochem J. 1999;338:717-722. https://doi.org/10.1042/0264-6021:3380717
  16. Peralta C, Bartrons R, Serafin A, Blazquez C, Guzman M, Prats N, Xaus C, Cutillas B, Gelpi E, Rosello-Catafau J. Adenosine monophosphate activated protein kinase mediates the protective effects of ischemic preconditioning on hepatic ischemia-reperfusion injury in the rat. Hepatology. 2001;34:1164-1173. https://doi.org/10.1053/jhep.2001.29197
  17. Tian R, Musi N, D'Agostino J, Hirshman MF, Goodyear LJ. Increased adenosine monophosphate-activated protein kinase activity in rat hearts with pressure-overload hypertrophy. Circulation. 2001;104:1664-1669. https://doi.org/10.1161/hc4001.097183
  18. Carling D. The AMP-activated protein kinase cascade - a unifying system for energy control. Trends Biochem Sci. 2004;29:18-24. https://doi.org/10.1016/j.tibs.2003.11.005
  19. Bergeron R, Ren JM, Cadman KS, Moore IK, Perret P, Pypaert M, Young LH, Semenkovich CF, Shulman GI. Chronic activation of AMP kinase results in NRF-1 activation and mitochondrial biogenesis. Am J Physiol Endocrinol Metab. 2001;281:1340-1346. https://doi.org/10.1152/ajpendo.2001.281.6.E1340
  20. Kukidome D, Nishikawa T, Sonoda K, Imoto K, Fujisawa K, Yano M, Motoshima H, Taguchi T, Matsumura T, Araki E. Activation of AMP-activated protein kinase reduces hyperglycemia-induced mitochondrial reactive oxygen species production and promotes mitochondrial biogenesis in human umbilical vein endothelial cells. Diabetes. 2006;55:120-127. https://doi.org/10.2337/diabetes.55.01.06.db05-0943
  21. Terai K, Hiramoto Y, Masaki M, Sugiyama S, Kuroda T, Hori M, Kawase I, Hirota H. AMP-activated protein kinase protects cardiomyocytes against hypoxic injury through attenuation of endoplasmic reticulum stress. Mol Cell Biol. 2005;25:9554-9575. https://doi.org/10.1128/MCB.25.21.9554-9575.2005
  22. Russell I, Li J, Coven DL, Pypaert M, Zechner C, Palmeri M, Giordano FJ, Mu J, Birnbaum MJ, Young LH. AMP-activated protein kinase mediates ischemic glucose uptake and prevents postischemic cardiac dysfunction, apoptosis, and injury. J Clin Invest. 2004;114:495-503. https://doi.org/10.1172/JCI19297
  23. Sukhodub A, Jovanovi S, Qingyou DU, Budasl G, Clelland AK, Shen M, Sakamoto K, Tian R, Jovanovic A. AMP-activated protein kinase mediates preconditioning in cardiomyocytes by regulating activity and trafficking of sarcolemmal ATP-sensitive $K^{+}$ channels. J Cell Physiol. 2007;210:224-236. https://doi.org/10.1002/jcp.20862
  24. Nishino Y, Miura T, Mikia T, Sakamoto J, Nakamura Y, Ikeda Y, Kobayashi H, Shimamoto K. Ischemic preconditioning activates AMPK in a PKC-dependent manner and induces GLUT4 up-regulation in the late phase of cardioprotection. Cardiovasc Res. 2004;61:610-619. https://doi.org/10.1016/j.cardiores.2003.10.022
  25. Walker J, Jijon HB, Diaz H, Salehi P, Churchill T, Madsen KL. 5-Aminoimidazole-4-carboxamide riboside (AICAR) enhances GLUT2-dependent jejunal glucose transport: a possible role for AMPK. Biochem J. 2005;385:485-491. https://doi.org/10.1042/BJ20040694
  26. Gaskin FS, Kamada K, Yusof M, Korthuis RJ. 5-AMP-activated protein kinase activation prevents postischemic leukocyteen-dothelial cell adhesive interactions. Am J Physiol Heart Circ Physiol. 2007;292:326-332. https://doi.org/10.1152/ajpheart.00744.2006
  27. Kim CH, Cho YS, Chun YS, Park JW, Kim MS. Early expression of myocardial HIF-1alpha in response to mechanical stresses: regulation by stretch-activated channels and the phosphatidy-linositol 3-kinase signaling pathway. Circ Res. 2002;90:E25-33. https://doi.org/10.1161/hh0202.104923
  28. Nagaya N, Nishikimi T, Yoshihara F, Horio T, Morimoto A, Kangawa K. Cardiac adrenomedullin gene expression and peptide accumulation after acute myocardial infarction in rats. Am J Physiol Regul Integr Comp Physiol. 2000;278:1019-1026. https://doi.org/10.1152/ajpregu.2000.278.4.R1019
  29. Kim CH, Choi H, Chun YS, Kim GT, Park JW, Kim MS. Hyperbaric oxygenation pretreatment induces catalase and reduces infarct size in ischemic rat myocardium. Pflugers Arch. 2001;442:519-525. https://doi.org/10.1007/s004240100571
  30. Sadoshima J, Takahashi T, Jahn L, Izumo S. Roles of mechano-sensitive ion channels, cytoskeleton, and contractile activity in tretch-induced immediate-early gene expression and hypertrophy of cardiac myocytes. Proc Natl Acad Sci USA. 1992;89:9905-9909. https://doi.org/10.1073/pnas.89.20.9905
  31. Biagi BA, Enyeart JJ. Gadolinium blocks low and high threshold calcium currents in pituitary cells. Am Physiol. 1990;259:515-520. https://doi.org/10.1152/ajpcell.1990.259.3.C515
  32. Huang CH, Wang JS, Chiang SC, Wang YY, Lai ST, Weng ZC. Brief pressure overload of the left ventricle preconditions rabbit myocardium against infarction. Ann Thorac Surg. 2004;78:628-633. https://doi.org/10.1016/j.athoracsur.2004.01.046
  33. Kudo N, Gillespie JG, Kung L,Witters LA, Schulz R, Clanachan AS, Lopaschuk GD. Characterization of 5-AMP activated protein kinase activity in the heart and its role in inhibiting acetyl-CoA carboxylase during reperfusion following ischemia. Biochim Biophys Acta. 1996;1301:67-75. https://doi.org/10.1016/0005-2760(96)00013-6
  34. Hawley SA, Boudeau J, Reid JL, Mustard KJ, Udd L, Makela TP, Alessi DR, Hardie DG. Complexes between the LKB1 tumor suppressor, STRAD alpha/beta and MO25 alpha/beta are upstream kinases in the AMP-activated protein kinase cascade. J Biol. 2003;2:28-32. https://doi.org/10.1186/1475-4924-2-28

Cited by

  1. Cell Survival Programs and Ischemia/Reperfusion: Hormesis, Preconditioning, and Cardioprotection vol.5, pp.3, 2010, https://doi.org/10.4199/c00090ed1v01y201309isp044
  2. Dystrophin-glycoprotein complex regulates muscle nitric oxide production through mechanoregulation of AMPK signaling vol.112, pp.44, 2010, https://doi.org/10.1073/pnas.1512991112
  3. Gadolinium and ruthenium red attenuate remote hind limb preconditioning-induced cardioprotection: possible role of TRP and especially TRPV channels vol.389, pp.8, 2010, https://doi.org/10.1007/s00210-016-1251-5
  4. Adenosine monophosphate-activated protein kinase activation and suppression of inflammatory response by cell stretching in rabbit synovial fibroblasts vol.423, pp.1, 2010, https://doi.org/10.1007/s11010-016-2835-6
  5. Pretreatment with low-dose gadolinium chloride attenuates myocardial ischemia/reperfusion injury in rats vol.37, pp.4, 2016, https://doi.org/10.1038/aps.2015.156
  6. Exploring the Role of TRPV and CGRP in Adenosine Preconditioning and Remote Hind Limb Preconditioning-Induced Cardioprotection in Rats vol.31, pp.2, 2010, https://doi.org/10.1007/s10557-017-6716-3
  7. Hearts lacking plasma membrane KATP channels display changes in basal aerobic metabolic substrate preference and AMPK activity vol.313, pp.3, 2017, https://doi.org/10.1152/ajpheart.00612.2016
  8. AMPK-dependent nitric oxide release provides contractile support during hyperosmotic stress vol.113, pp.1, 2010, https://doi.org/10.1007/s00395-017-0665-7
  9. Novel Potentials of the DPP-4 Inhibitor Sitagliptin against Ischemia-Reperfusion (I/R) Injury in Rat Ex-Vivo Heart Model vol.19, pp.10, 2010, https://doi.org/10.3390/ijms19103226
  10. Immunity and Stress Responses Are Induced During Ex Situ Heart Perfusion vol.13, pp.6, 2010, https://doi.org/10.1161/circheartfailure.119.006552