DOI QR코드

DOI QR Code

Epigallocatechin-3-gallate Regulates NADPH Oxidase Expression in Human Umbilical Vein Endothelial Cells

  • Ahn, Hee-Yul (Department of Pharmacology, College of Medicine, Chungbuk University) ;
  • Kim, Chan-Hyung (Department of Pharmacology, College of Medicine, Chungbuk University) ;
  • Ha, Tae-Sun (Department of Pediatrics, College of Medicine, Chungbuk University)
  • Received : 2010.09.15
  • Accepted : 2010.10.18
  • Published : 2010.10.31

Abstract

Vascular NADPH oxidase plays a pivotal role in producing superoxide in endothelial cells and thus acts in the initiation and development of inflammatory cardiovascular diseases such as atherosclerosis. Epigallocatechin-3-gallate (EGCG), the major catechin derived from green tea, has multiple beneficial effects for treating cardiovascular disease but the effect of EGCG on the expression of vascular NADPH oxidase remains unknown. In this study, we investigated the mechanism(s) by which EGCG might inhibit the expression of subunits of NADPH oxidase, namely $p47^{phox}$, $p67^{phox}$ and $p22^{phox}$, induced by angiotensin II (Ang II) in human umbilical vein endothelial cells. Ang II increased the expression levels of $p47^{phox}$, $p67^{phox}$, and $p22^{phox}$, but EGCG counteracted this effect on $p47^{phox}$. Moreover, EGCG did not affect the production of reactive oxygen species induced by Ang II. These data suggest a novel mechanism whereby EGCG might provide direct vascular benefits for treating inflammatory cardiovascular diseases.

Keywords

References

  1. Rueckschloss U, Duerrschmidt N, Morawietz H. NADPH oxidase in endothelial cells: impact on atherosclerosis. Antioxid Redox Signal. 2003;5:171-180. https://doi.org/10.1089/152308603764816532
  2. Dikalov SI, Dikalova AE, Bikineyeva AT, Schmidt HH, Harrison DG, Griendling KK. Distinct roles of Nox1 and Nox4 in basal and angiotensin II-stimulated superoxide and hydrogen peroxide production. Free Radic Biol Med. 2008;45:1340-1351. https://doi.org/10.1016/j.freeradbiomed.2008.08.013
  3. Ushio-Fukai M, Alexander RW. Reactive oxygen species as mediators of angiogenesis signaling: role of NADPH oxidase. Mol Cell Biochem. 2004;264:85-97. https://doi.org/10.1023/B:MCBI.0000044378.09409.b5
  4. Zhang H, Schmeisser A, Garlichs CD, Plotze K, Damme U, Mugge A, Daniel G. Angiotensin II-induced superoxide anion generation in human vascular endothelial cells: role of membrane-bound NADH-/NADPH-oxidases. Cardiovasc Res. 1999;44:215-222. https://doi.org/10.1016/S0008-6363(99)00183-2
  5. Pueyo ME, Gonzalez W, Nicoletti A, Savoie F, Arnal JF, Michel JB. Angiotensin II stimulates endothelial vascular cell adhesion molecule-1 via nuclear factor-kappa B activation induced by intracellular oxidative stress. Arterioscler Thromb Vasc Biol. 2000;20:645-651. https://doi.org/10.1161/01.ATV.20.3.645
  6. Wassmann S, Nickenig G. Pathophysiological regulation of the AT1-receptor and implications for vascular disease. J Hypertens Suppl. 2006;24:S15-S21. https://doi.org/10.1097/01.hjh.0000220402.53869.72
  7. Gao L, Mann GE. Vascular NADPH oxidase activation in diabetes: a double-edged sword in redox signaling. Cardiovasc Res. 2009;82:9-20. https://doi.org/10.1093/cvr/cvp031
  8. Hu C, Dandapat A, Chen J, Liu Y, Hermonat PL, Carey RM, Mehta JL. Over-expression of angiotensin II type 2 receptor (agtr2) reduces atherogenesis and modulates LOX-1, endothelial nitric oxide synthase and heme-oxygenase-1 expression. Atherosclerosis. 2008;199:288-294. https://doi.org/10.1016/j.atherosclerosis.2007.11.006
  9. Middleton E Jr, Kandaswami C, Theoharides TC. The effects of plant flavonoids on mammalian cells: Implications for inflammation, heart disease, and cancer. Pharmacol Rev. 2000;52:673-751.
  10. Sasazuki S, Kodama H, Yoshimasu K, Liu Y, Washio M, Tanaka K, Tokunaga S, Kono S, Arai H, Doi Y, Kawano T, Nakagaki O, Takada K, Koyanagi S, Hiyamuta K, Nii T, Shirai K, Ideishi M, Arakawa K, Mohri M, Takeshita A. Relation between green tea consumption and the severity of coronary atherosclerosis among Japanese men and women. Ann Epidemiol. 2000;10:401-408. https://doi.org/10.1016/S1047-2797(00)00066-1
  11. Ludwig A, Lorenz M, Grimbo N, Steinle F, Meiners S, Bartsch C, Stangl K, Baumann G, Stangl V. The tea flavonoid epigallo-catechin-3-gallate reduces cytokine-induced vcam-1 expression and monocyte adhesion to endothelial cells. Biochem Biophys Res Commun. 2004;316:659-665. https://doi.org/10.1016/j.bbrc.2004.02.099
  12. Chae YJ, Kim CH, Ha TS, Hescheler J, Ahn HY, Sachinidis A. Epigallocatechin-3-O-gallate inhibits the angiotensin II-induced adhesion molecule expression in human umbilical vein endothelial cell via inhibition of MAPK pathways. Cell Physiol Biochem. 2007;20:859-866. https://doi.org/10.1159/000110446
  13. Ahn HY, Xu Y, Davidge ST. Epigallocatechin-3-O-gallate inhibits $TNF\alpha$-induced monocyte chemotactic protein-1 production from vascular endothelial cells. Life Sciences. 2008;82:964-968. https://doi.org/10.1016/j.lfs.2008.02.018
  14. Niemiec P, Zak I. Vascular NADPH oxidases-role in the pathogenesis of atherosclerosis. Postepy Biochem. 2005;51:1-11.
  15. Babior BM. NADPH oxidase: an update. Blood. 1999;93:1464-1476.
  16. Brandes RP, Miller FJ, Beer S, Haendeler J, Hoffmann J, Ha T, Holland SM, Gorlach A, Busse R. The vascular NADPH oxidase subunit $p47^{phox}$ is involved in redox-mediated gene expression. Free Radic Biol Med. 2002;32:1116-1122. https://doi.org/10.1016/S0891-5849(02)00789-X
  17. Ago T, Kitazono T, Ooboshi H, Iyama T, Han YH, Takada J, Wakisaka M, Ibayashi S, Utsumi H, Iida M. Nox4 as the major catalytic component of an endothelial NADPH oxidase. Circulation. 2004;109:227-233. https://doi.org/10.1161/01.CIR.0000105680.92873.70
  18. Dworakowski R, Alom-Ruiz SP, Shah AM. NADPH oxidase-derived reactive oxygen species in the regulation of endothelial phenotype. Pharmacol Rep. 2008;60:21-28.
  19. Skultetyova D, Filipova S, Riecansky I, Skultety J. The role of angiotensin type 1 receptor in inflammation and endothelial dysfunction. Recent Pat Cardiovasc Drug Discov. 2007;2:23-27. https://doi.org/10.2174/157489007779606130
  20. Landmesser U, Cai H, Dikalov S, McCann L, Hwang J, Jo H, Holland SM, Harrison DG. Role of $p47(^{phox})$ in vascular oxidative stress and hypertension caused by angiotensin II. Hypertension. 2002;40:511-515. https://doi.org/10.1161/01.HYP.0000032100.23772.98
  21. Dorenkamp M, Riad A, Stiehl S, Spillmann F, Westermann D, Du J, Pauschinger M, Noutsias M, Adams V, Schultheiss HP, Tschope C. Protection against oxidative stress in diabetic rats: role of angiotensin AT(1) receptor and beta 1-adrenoceptor antagonism. Eur J Pharmacol. 2005;520:179-187. https://doi.org/10.1016/j.ejphar.2005.07.020
  22. Yao R, Cheng X, Chen Y, Xie JJ, Yu X, Liao MY, Ding YJ, Tang TT, Liao YH. Molecular mechanisms of irbesartan suppressing atherosclerosis in high cholesterol-diet apolipoprotein E knock-out mice. Int J Cardiol. 2010;139:113-122. https://doi.org/10.1016/j.ijcard.2008.10.013
  23. Alvarez E, Rodino-Janeiro BK, Ucieda-Somoza R, Gonzalez-Juanatey JR. Pravastatin counteracts angiotensin II-induced upregulation and activation of NADPH oxidase at plasma membrane of human endothelial cells. J Cardiovasc Pharmacol. 2010;55:203-212. https://doi.org/10.1097/FJC.0b013e3181ce5f5a
  24. Cooper R, Morre DJ, Morre DM. Medicinal benefits of green tea: Part 1. Review of noncancer health benefits. J Altern Complement Med. 2005;11:521-528. https://doi.org/10.1089/acm.2005.11.521
  25. Zheng Y, Song HJ, Yun SH, Chae YJ, Kim CH, Ha TS, Sachinidis A, Ahn HY, Davidge ST. Inhibition of angiotensin II-induced vascular smooth muscle cell hypertrophy by different catechins. Korean J Physiol Pharmacol. 2005;9:117-123.
  26. Ramesh E, Geraldine P, Thomas PA. Regulatory effect of epigallocatechin gallate on the expression of C-reactive protein and other inflammatory markers in an experimental model of atherosclerosis. Chem Biol Interact. 2010;183:125-132. https://doi.org/10.1016/j.cbi.2009.09.013
  27. Wang CJ, Liu JT, Guo F. (-)-epigallocatechin gallate inhibits endothelin-1-induced C-reactive protein production in vascular smooth muscle cells. Basic Clin Pharmacol Toxicol. 2010;107:669-675. https://doi.org/10.1111/j.1742-7843.2010.00557.x
  28. Nishikawa H, Wakano K, Kitani S. Inhibition of NADPH oxidase subunits translocation by tea catechin EGCG in mast cell. Biochem Biophys Res Commun. 2007;362:504-509. https://doi.org/10.1016/j.bbrc.2007.08.015
  29. Wu CH, Wu CF, Huang HW, Jao YC, Yen GC. Naturally occurring flavonoids attenuate high glucose-induced expression of proinflammatory cytokines in human monocytic THP-1 cells. Mol Nutr Food Res. 2009;53:984-995. https://doi.org/10.1002/mnfr.200800495
  30. Spanier G, Xu H, Xia N, Tobias S, Deng S, Wojnowski L, Forstermann U, Li H. Resveratrol reduces endothelial oxidative stress by modulating the gene expression of superoxide dismutase 1 (SOD1), glutathione peroxidase 1 (GPx1) and NADPH oxidase subunit (Nox4). J Physiol Pharmacol. 2009;60 Suppl 4:111-116.
  31. Sanchez M, Lodi F, Vera R, Villar IC, Cogolludo A, Jimenez R, Moreno L, Romero M, Tamargo J, Perez-Vizcaino F, Duarte J. Quercetin and isorhamnetin prevent endothelial dysfunction, superoxide production, and overexpression of $p47^{phox}$ induced by angiotensin II in rat aorta. J Nutr. 2007;137:910-915. https://doi.org/10.1093/jn/137.4.910
  32. Huang SM, Wu CH, Yen GC. Effects of flavonoids on the expression of the pro-inflammatory response in human monocytes induced by ligation of the receptor for AGEs. Mol Nutr Food Res. 2006;50:1129-1139 https://doi.org/10.1002/mnfr.200600075
  33. Crispo JA, Ansell DR, Piche M, Eibl JK, Khaper N, Ross GM, Tai TC. Protective effects of polyphenolic compounds on oxidative stress-induced cytotoxicity in PC12 cells. Can J Physiol Pharmacol. 2010;88:429-438. https://doi.org/10.1139/Y09-137
  34. Bao W, Behm DJ, Nerurkar SS, Ao Z, Bentley R, Mirabile RC, Johns DG, Woods TN, Doe CP, Coatney RW, Ohlstein JF, Douglas SA, Willette RN, Yue TL. Effects of p38 MAPK Inhibitor on angiotensin II-dependent hypertension, organ damage, and superoxide anion production. J Cardiovasc Pharmacol. 2007;49:362-368. https://doi.org/10.1097/FJC.0b013e318046f34a

Cited by

  1. Controlling for sugar and ascorbic acid, a mixture of flavonoids matching navel oranges significantly increases human postprandial serum antioxidant capacity vol.31, pp.7, 2011, https://doi.org/10.1016/j.nutres.2011.06.006
  2. Natural Compounds as Modulators of NADPH Oxidases vol.2013, pp.None, 2010, https://doi.org/10.1155/2013/271602
  3. The antioxidant activity of soursop decreases the expression of a member of the NADPH oxidase family vol.5, pp.2, 2014, https://doi.org/10.1039/c3fo60135h
  4. Antioxidant and Antiangiogenic Properties of Phenolic Extract from Pleurotus tuber-regium vol.62, pp.39, 2010, https://doi.org/10.1021/jf5031604
  5. Antioxidant and Antiangiogenic Properties of Phenolic Extract from Pleurotus tuber-regium vol.62, pp.39, 2010, https://doi.org/10.1021/jf5031604
  6. EGCG attenuates atherosclerosis through the Jagged-1/Notch pathway vol.37, pp.2, 2010, https://doi.org/10.3892/ijmm.2015.2422
  7. Roselle supplementation prevents nicotine-induced vascular endothelial dysfunction and remodelling in rats vol.42, pp.7, 2010, https://doi.org/10.1139/apnm-2016-0506
  8. Recent Advances in the Understanding of the Health Benefits and Molecular Mechanisms Associated with Green Tea Polyphenols vol.67, pp.4, 2019, https://doi.org/10.1021/acs.jafc.8b06146
  9. Ambient Particulate Matter Induces Vascular Smooth Muscle Cell Phenotypic Changes via NOX1/ROS/NF-κB Dependent and Independent Pathways: Protective Effects of Polyphenols vol.10, pp.5, 2010, https://doi.org/10.3390/antiox10050782
  10. Potential protective mechanisms of green tea polyphenol EGCG against COVID-19 vol.114, pp.None, 2010, https://doi.org/10.1016/j.tifs.2021.05.023
  11. A review on prevention of glycation of proteins: Potential therapeutic substances to mitigate the severity of diabetes complications vol.195, pp.None, 2010, https://doi.org/10.1016/j.ijbiomac.2021.12.041