DOI QR코드

DOI QR Code

자외선 활성화 원자층 성장 기술을 이용한 상온에서 TiO2 박막의 제조

Fabrication of TiO2 Thin Films Using UV-enhanced Atomic Layer Deposition at Room Temperature

  • 투고 : 2009.11.23
  • 심사 : 2009.12.23
  • 발행 : 2010.03.30

초록

상온에서 고품질의 $TiO_2$ 박막을 제조하기 위하여 titanium isopropoxide [Ti(OCH$(CH_3)_2)_4$, TIP]와 $H_2O$을 이용한 자외선 활성화 원자층 증착(UV-enhanced atomic layer deposition: UV-ALD) 기술을 개발하였다. UV-ALD 기술은 상온에서 자체제어 표면 반응(self-limitting surface reaction)을 통해 균일하고 고품위 등방 특성을 갖는 순수한 $TiO_2$ 박막 증착이 가능하였다. ALD 반응 시 조사되는 자외선은 Si 기질 위에 우수한 접착력을 가지는 고품질의 $TiO_2$ 박막을 얻는데 효과적이었다. UV-ALD 기술은 높은 단차비(aspect ratio)를 가지는 trench 기질 위에 균일한 $TiO_2$ 박막을 증착하는 데에 적용되었다.

A UV-enhanced atomic layer deposition (UV-ALD) process was developed to deposit $TiO_2$ thin films on Si substrates using titanium isopropoxide(TIP) and $H_2O$ as precursors with UV light. In the UV-ALD process, the surface reactions were found to be self-limiting and complementary enough to yield a uniform, conformal, pure $TiO_2$ thin film on Si substrates at room temperature. The UV light was very effective to obtain the high-quality $TiO_2$ thin films with good adhesive strength on Si substrates. The UV-ALD process was applied to produce uniform and conformal $TiO_2$ coats into deep trenches with high aspect ratio.

키워드

참고문헌

  1. S. Chao, W.-H. Wang, and C.-C. Lee, Appl. Optics 40, 2177 (2001). https://doi.org/10.1364/AO.40.002177
  2. T. Yokogawa, S. Yoshii, A. Tsumbajimura, Y. Sasai, and J. Merz, Jpn. J. Appl. Phys. 34, L751 (1995). https://doi.org/10.1143/JJAP.34.L751
  3. H. Fukuda, S. Namioka, M. Miura, Y. Ishikawa, M. Yoshino, and S. Nomura, Jpn. J. Appl. Phys. 38, 6034 (1999). https://doi.org/10.1143/JJAP.38.6034
  4. S.A. Campbell, D.C. Gilmer, X. Wang, M. Hsieh, H. Kim, W.L. Gladfelter, and J. Yan, IEEE Trans. Electron. Devices 44, 104 (1997). https://doi.org/10.1109/16.554800
  5. J. Sheng, N. Yoshida, J. Karasawa, and T. Fukami, Sens. Actuators B 41, 131 (1997). https://doi.org/10.1016/S0925-4005(97)80285-7
  6. B. O'Regan and M. Gratzel, Nature 353, 737 (1991). https://doi.org/10.1038/353737a0
  7. S. Ichikawa and R. Doi, Thin Solid Films 292, 130 (1997). https://doi.org/10.1016/S0040-6090(96)09090-6
  8. H. Ohsaki, Y. Tachibana , A. Mitsui, T. Kamiyama, and Yasuo Hayashi, Thin Solid Films 392, 169 (2001). https://doi.org/10.1016/S0040-6090(01)01023-9
  9. N. Inoue, H. Yuasa, and M. Okoshi, Appl. Surf. Sci. 197, 393 (2002). https://doi.org/10.1016/S0169-4332(02)00347-1
  10. V.G. Bessergenev, I.V. Khmelinskii, R.J.F. Pereira, V.V. Krisuk, A.E. Turgambaeva, and I.K. Igumenov, Vacuum 64, 275 (2002). https://doi.org/10.1016/S0042-207X(01)00318-9
  11. J. Aarik, A. Aidla, T. Uustare, M. Ritala, and M. Leskela, Appl. Surf. Sci. 161, 385 (2000). https://doi.org/10.1016/S0169-4332(00)00274-9
  12. 이두형, 권새롬, 이석관, 노승정, 한국진공학회지 18, 296, (2009).
  13. 김혁, 이주현, 한창희, 김운중, 이연승, 이원준, 나사균, 한국진공학회지 12, 263 (2003).
  14. J. P. Lee and M. M. Sung, J. Am. Chem. Soc. 126, 28 (2004). https://doi.org/10.1021/ja038769+
  15. T. Suntola, Thin Solid Films 216, 84 (1992). https://doi.org/10.1016/0040-6090(92)90874-B
  16. T. Suntola, Mater. Sci. Rep. 4, 261 (1989). https://doi.org/10.1016/S0920-2307(89)80006-4
  17. B. H. Lee, M. K. Ryu, Sung-Y. Choi, K. H. Lee, S. Im, and M. M. Sung, J. Am. Chem. Soc. 129, 16304 (2007).
  18. T. Ohishi, S. Maekawa, and A. Katoh, J. Non-Cryst. Solids 147, 493 (1992). https://doi.org/10.1016/S0022-3093(05)80665-9
  19. S. Okusaki and T. Ohishi, J. Non-Cryst. Solids 319, 311 (2003). https://doi.org/10.1016/S0022-3093(02)02054-9
  20. A. Ishizaka and Y.J. Shiraki, J. Electrochem. Soc. 133, 666 (1986). https://doi.org/10.1149/1.2108651

피인용 문헌

  1. Selective Transmission Properties of Al-Ti Based Oxide Thin Films vol.22, pp.1, 2013, https://doi.org/10.5757/JKVS.2013.22.1.13
  2. Investigations of Adsorption Behaviors of Various Adsorbents Including Carbon, or TiO2 vol.21, pp.2, 2012, https://doi.org/10.5757/JKVS.2012.21.2.106