DOI QR코드

DOI QR Code

Numerical Simulation of the Elastic Moduli of Cement Paste As a Three Dimensional Unit Cell

  • Park, Ki-Bong (Division of Architecture College of Engineering, Kangwon national University)
  • 투고 : 2010.09.09
  • 발행 : 2010.12.30

초록

This paper describes a numerical method for estimating the elastic moduli of cement paste. The cement paste is modeled as a unit cell which consists of three components: the unhydrated cement grain, the gel, and the capillary pore. In the unit cell, the volume fractions of the constituents are quantified using a single kinetic function calculating the degree of hydration. The elastic moduli of cement paste are calculated from the total displacements of constituents when a uniform pressure is applied to the gel contact area. The cement paste is assumed to be a homogenous isotropic matrix. Numerical simulations were conducted through the finite element analysis of the three-dimensional periodic unit cell. The model predictions are compared with experimental results. The predicted trends are in good agreement with experimental observations. This approach and some of the results might also be relevant for other technical applications.

키워드

참고문헌

  1. Berveiller, M. & Zaoui, A. (1979) "An extension of the self-consistent scheme to plastically-flowing polycrytals" J. Mech. Phys. Solids 26, 325-344.
  2. Bishop, J. F. W. & Hill, R. (1951) "A theoretical derivation of plastic properties of a polycrystalline face-center metal" Philos. Mag. 42, 1298-1307. https://doi.org/10.1080/14786444108561385
  3. Boumiz, A., Vernet, C. & Tenoudji, F. C. (1996) "Mechanical properties of cement pastes and mortar at early ages - Evolution with time and degree of hydration" Adv. Cem. Basde Mater. 3, 94-106.
  4. Counto, U. J. (1964) "The effect of the elastic modulus of the aggregate on the elastic modulus, creep and creep recovery of concrete" Mag. Concr. Res. 16 (48), 129-138. https://doi.org/10.1680/macr.1964.16.48.129
  5. Garboczi, E. J. & Berryman, J. G. (2001) "Elastic moduli of a material containing composite inclusions: effective medium theory and finite element computations" Mech. Mater. 33, 455-470. https://doi.org/10.1016/S0167-6636(01)00067-9
  6. Granju, J. L. & Maso, J. C. (1980) "Module de deformation longitudinal des pastes de ciment Portland conserves dans l'eau" Cem. Concr. Res. 10, 731-738. https://doi.org/10.1016/0008-8846(80)90001-0
  7. Hashin, Z. & Shtrikman, S. (1963) "A variational approach to the theory of the elastic behavior of multiphase materials" J. Mech. Phys. Solids 11 (2), 127-140. https://doi.org/10.1016/0022-5096(63)90060-7
  8. Hill, R. (1963) "Elastic properties of reinforced solids: some theoretical principles" J. Mech. Phys. Solids 11 (5), 357-372. https://doi.org/10.1016/0022-5096(63)90036-X
  9. Hua, C., Ehrlacher, A. & Acker, P. (1997) "Analyses and models of the autogenous shrinkage of hardening cement paste II. Modelling at scale of hydration grains" Cem. Concr. Res. 27 (2), 245-258. https://doi.org/10.1016/S0008-8846(96)00202-5
  10. Kaplan, M. F. (1959) "Ultrasonic pulse velocity, dynamics modulus of elasticity, Poisson's ratio, and the strength of concrete made with thirteen different coarse aggregate" RILEM Bulletin. 1, pp. 58-73.
  11. McLaughlin, R. (1977) "A study of the differential scheme for composite materials" Int. J. Eng. Sci. 15, 237-244. https://doi.org/10.1016/0020-7225(77)90058-1
  12. Noda, N., Nisitani, H., Takase, Y. & Shukuwa, Y. (2005) "Two-dimensional and axisymemetric unit cell models in the analysis of composite materials" Comp. Struc. 69, 429-435.
  13. Park, K. B. (2001) "Prediction of cracking in high-strength concrete using a hydration model" PhD thesis, The University of Tokyo.
  14. Park, K. B., Noguchi, T. & Plawsky, J. (2005) "Modeling of hydration reactions using neural networks to predict the average properties of cement paste" Cem. Concr. Res. 35, 1676-1684. https://doi.org/10.1016/j.cemconres.2004.08.004
  15. Park, K. B., Jee, N. Y., Yoon, I. S. & Lee, H. S. (2008) "Prediction of temperature distribution in high-strength concrete using hydration model" Mar.-Arp., 180-186.
  16. Roberts, A. P. & Garboczi, E. J. (2001) "Elastic moduli of model random three-dimensional closed-sell cellular solids" Acta. Mater. 49, 189-197. https://doi.org/10.1016/S1359-6454(00)00314-1
  17. Roberts, A. P. & Garboczi, E. J. (2002) "Elastic moduli of model random three-dimensional closed-sell cellular solids" Mech. Phys. Solids 50, 33-35. https://doi.org/10.1016/S0022-5096(01)00056-4
  18. Taylor, G. I. (1983) "Plastic stains in metals" J. Inst. Metals 62, 307-624.
  19. Tomosawa, F (1997) "Development of a kinetic model for hydration of cement" Proceedings of the 10th ICCC, V, II, 8.
  20. Tvergaad, V. (1990) "Analysis of tensile properties for a whisker-reinforced metal-matrix composite" Acta. Metall. Mater. 38, 185-194. https://doi.org/10.1016/0956-7151(90)90048-L
  21. Voigt, T., Ye, G., Sun, Z., Shah, S. P. & van Breugel, K. (2005) "Early age microstructure of Portland cement mortar investigated by ultrasonic shear waves and numerical simulation" Cem. Concr. Res. 35, 858-866. https://doi.org/10.1016/j.cemconres.2004.09.004
  22. Zhonghua, L., Schmauder, S., Wanner, A. & Dong, M. (1995) "Expression to characterize the flow behavior of particle-reinforced composites based on axi-symmentric unit cell modules" Scr. Metall. Mater. 1289-1294.
  23. Zimmerman, R. W. (1984) "Elastic moduli of a solid with spherical pores: New self-consistent method" Int. J. Rock Mech. and Mining Sci. Geomech. Abst. 21 (6), 339-343. https://doi.org/10.1016/0148-9062(84)90366-8