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Abstract

A Ka-band microstrip array antenna for wide-range detection of moving targets is analyzed through a photonic-
assisted reactive-near-field characterization technique. The antenna array employs a 3-dB-tapered feed network to su-
ppress the sidelobe level while retaining a wide azimuth beamwidth for a wide detection range. The relative near-
electric field patterns of the array and its 3-dB-tapered feed lines have been measured using an electro-optic field-
mapping technique for minimally invasive millimeter-wave sensing. A number of typical limitations on the technique,

involving bandwidth, low signal-modulation depth, and high

laser-induced noise in high-frequency applications, have

been overcome by suppressing the carrier portion of the optical interrogation beam.
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[ . Introduction

For the design and analysis of millimeter-wave ante-

nnas and microwave circuits, a complete characterization
of the near-electric-field distribution and polarization can
provide a wide variety of unique and valuable infor-
mation. Such near-electric vector fields can be measured
by the electro-optic sensing/sampling(EOS) technique,
which is widely known as a minimally invasive diagnos-

tic tool for microwave sensing and imaging' .
EOS measurement techniques typically possess an

[1]

extremely broad frequency response, including coverage
of the entire microwave range and even part of the tera-
hertz regime. This is due to the properties of electro-
optic(EO) crystals and short-pulse lasers™™. However, for
radio frequency(RF) sensing up to the millimeter-wave
range, the use of pulsed lasers may be found to be pro-
hibitively expensive, while direct sensing of the RF com-
ponents becomes technically challenging due to the need
for a high-bandwidth detector and read-out instrument.
To address these issues, mixing techniques are commonly
employed to down-convert the RF band to a subsonic
intermediate frequency(IF) that results from the frequen-
cy beating between two modulation light sidebands of a
continuous-wave(CW) optical carrier at the signal and

local-oscillator(LO) frequencies

B1~15]
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Typically, EO sensing with a cw-laser beam suffers
from bandwidth limitations, low signal-modulation depth,
and high laser-induced noise for millimeter-wave sen-
sing applications. To overcome these issues, a multi-
stage carrier suppression technique was used for enhan-
cing the EO signal portion of the optical interrogation
beam. The three cascaded carrier suppression stages of
the EO measurement system, located within an electro-
optic modulator used to generate a local-oscillator signal
as well as within the electro-optic sensor itself, were
used to successfully perform near-field sensing on a full
Ka-band antenna array, including its phase impedance-
matching network.

II. Design of a Ka-Band Receiver Array Antenna
with 3-dB-Tapered Network

We analyze a microstrip array antenna designed to ope-
rate at 35.5 GHz as a position detector of moving
targets. The array was designed to have a relatively na-
rrow beamwidth in the elevation plane for a wide detec-
tion range, compared to the beamwidth in the azimuthal
plane. This was achieved by aligning the electric-field
plane of each element to the array axis. Employing a
3-dB-tapered serial-parallel feed network', the array
had a sidelobe level of less than —20 dB, while retai-
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ning a wide azimuthal beamwidth!”.

As illustrated in Fig. 1, the 3-dB-tapered feeding
structure causes the feeding power to degrade by half
after passing each element; thus, the feeder is designed
to deliver 1/2, 1/4, 1/8, and 1/16 of the feeding power
to each sub-array antenna relative to the center. In
general, the phase difference between elements can be
eliminated by making the distance between elements A .
In this array set, rather than narrowing the element
spacing to less than A, to minimize the antenna size,
the feeding lines for the 12 sub-arrays(shown in Fig. 2)
were meandered to compensate their phase differences
accordingly.

The fabricated antenna layout is presented in Fig. 2,
and the overall size of one-half of the array set(of an
8x2 receiver antenna) was reduced to 46x15.4 mm’.
Additional details of the design, specification, and analy-
sis of the antennas with this 3-dB-tapered feed can be
found in Ref. [7].
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Fig. 1. Half of an 8x2 series-parallel receiving antenna with
a 3-dB-tapered configuration feed network and power
distribution scheme.
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Fig. 22 A pair of 8x2 receiver antennas with a 3-dB-tapered
feeding network.

. Millimeter-wave Near-field Sensing with
Multi-stage Optical Carrier Suppression

The characteristics of the antenna, including its feed
structure, were analyzed by exploring the reactive-near-
field radiation performance through a high-frequency EO
sensing system. The use of a multi-stage optical carrier
suppression technique, which enhanced the signal-modu-
lation depth for both LO generation and EO sensing in
millimeter-wave field measurements, will subsequently
be described. This carrier suppression method enhances
both the sensitivity and bandwidth of the photonic mea-
surements, and it is useful even up to the Ka-band
region for EO sensing techniques that use a continuous-
wave laser beam.

The LO, amplitude-modulated light components are
produced using an electro-optic modulator(EOM), and
the frequency response of the EOM then determines the
bandwidth of the LO modulation. Since the LO band
must be close to that of the RF signal to create a reaso-
nably low IF, it is crucial that the EOM bandwidth
extends to the frequency of the RF signal. To avoid the
expense of applying a millimeter-wave EOM to the
generation of a millimeter-wave LO sideband, a commer-
cial telecom-grade, X- or Ku-band modulator could be
used instead, but only if its bandwidth and modulation
depth could be enhanced. This is mainly because the
modulation sidebands diminish for the higher frequen-
cies, whereas the carrier component is maintained. To
avoid a decrease in the modulation sidebands and the
contrast of these sidebands with the carrier(i.e., the
modulation depth), one may attempt to suppress only the
carrier portion of the light beam.

To extend the bandwidth of EO sensing with a cw
laser diode up to the millimeter-wave regime, a photonic
down-mixing format previously used for X-"! and K-
band sensing[8] has been adopted. Two principal EO
sections were employed in the probing system: an EOM
to provide an intense amplitude modulation on the cw
beam for the creation of the LO optical components,
and the EO probe, which was used in concert with a
photodetector to down-mix the LO and the RF signal.
The minute, down-converted IF components contain am-
plitude and phase information proportional to that of the
high-frequency RF signal. Although the EO sensitivity
decreases for measurements at higher frequencies due to
the degradation of modulation depth, this can be con-
tained reasonably well by suppressing the carrier com-
ponents.

3-1 First-stage Carrier Suppression
Operating an EOM at the minimum-transmission dc-
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Fig. 3. Optical fiber-based heterodyne electro-optic sensing
concept. Points a, b and ¢ are the locations of the
three carrier suppression stages(The whole system,
including the detailed sensor structure, can be refe-
rred to in Ref. [5]).

bias point of its sine-squared modulation curve is a
well-known technique for suppressing a carrier signal.
Here, the ac part of the driving signal, which normally
provides the LO for the photonic down-mixing, yields a
predominant amplitude-modulated transmission at the
second-order harmonic of the driving frequency, with a
carrier that is significantly suppressed[sl. The suppressed
carrier appreciably enhances the modulation depth, while
the second-order harmonic of the driving frequency crea-
tes a doubled LO frequency sideband for down-mixing.

Although this harmonic sideband generation scheme pro-
duces a nonlinear output, the second-order component is
dominant and actually serves as an efficient down-mi-
xing source for enhanced frequency sensing without
signal distortion. The antenna is fed at its resonant fre-
quency of fz==35.5 GHz with +5-dBm input power. The
solid-line spectrum shown in Fig. 4 represents the ca-
rrier-suppressed double sidebands when the EOM is
driven with +11 dBm at 17.2985 GHz, a frequency that
is LO/2(i.e., f10=35.497 GHz) compared to the second-
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Fig. 4. Carrier-suppressed LO spectra at stages a(solid plot)
and b(dashed gray plot) of Fig. 3(All signals atte-
nuated by 20 dB).
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order harmonic EOM output.

3-2 Second-stage Carrier Suppression

Since the bandwidth and modulation-depth-enhance-
ment technique relies on the nonlinearity of an EOM, a
larger LO/2 input will yield a more efficient second-
order LO harmonic. However, the damage threshold of
the EOM and deficiencies of the drivers at higher fre-
quencies will limit the modulation sideband of the
second-order harmonic. The modulation depth, though,
is determined by the carrier-to-sideband ratio, and thus
the modulation efficiency can be further enhanced by
additional carrier suppression.

The modulated input spectrum(Fig. 4) at stage a of
Fig. 3 shows a carrier-suppressed double-sideband(DSB)
with the second-order LO harmonic sidebands. A hig-
her-frequency LO modulation yields a wider sideband
separation, albeit with reduced amplitude. However, the
wider sideband separation makes it easier to eliminate
detrimental carrier components through filtering. For
instance, the spacing between LO sidebands for the
Ka-band signal is 0.29 nm as shown in Fig. 4. A fiber
Bragg grating(FBG) filter of 0.2-nm full width at half
maximum(FWHM) bandwidth accomplishes 13.2 dB of
additional carrier suppression at stage b, as shown in
Fig. 4, and thus the carrier-suppressed DSB spectrum
essentially evolves into a single-sideband(SSB) case.

3-3 Third-stage Carrier Suppression

The prior two stages of carrier suppression enhanced
the modulation depth of the LO sidebands that are used
for mixing with the RF fields to be measured. The
sensor itself yields an EO phase retardation when the
signal RF electric field and the optical beam interact
(i.e., the EO effect) within the probe crystal. Typically,
the phase modulation is transformed into a minute am-
plitude modulation using the slope at the 50 % trans-
mission point of the sine-squared amplitude-modulation
slope for the EO sensor. However, there have been re-
ports that the modulation depth can be enhanced by lo-
wering the transmission along the sine-squared function
to less than 50 %M,

It has been shown that an EOQ probe fabricated as a
micro-cavity optical resonator offers a steeper intrinsic
modulation slope without requiring conventional polariza-
tion optics to create the sine-squared modulation func-
tion”). The resonator-based modulation slope has more
advantages than that of the conventional case, as it has
its steepest slope around the minimum transmission re-
gime. The resonant EO-fiber probe used herein is a 52-
¢ m-thick x-cut LiTaO; wafer tip, which is coated so
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that it becomes a balanced resonator with »~0.81 for
the Fresnel field-reflection coefficient. As illustrated in
Fig. 5, operating the LO sidebands around the steepest
slope of the resonator curve yields a more efficient se-
condary RF modulation with less carrier power(ie.,
average transmission) than the conventional 50 % case.

Owing to the steep slope, both the left(red) and right
(blue) LO sidebands yield different transmission(or reflec-
tion) optical outputs. Although this slope difference causes
a different modulation depth and signal level, the same
slope polarity(i.e., ascending in this case) allows the out-
put modulation components to combine constructively in
one common fiber path to the photodetector. The ex-
perimental spectrum of the left and right sidebands is
shown in Fig. 6.
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Fig. 5. Principle of carrier-suppressed electro-optic modula-
tion for single-sideband optical input. The carrier
is much stronger at the conventional 50 % trans-
mission point, while the slope and sidebands are
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Fig. 6. Electro-optic-modulated LO and RF spectrum at stage

¢ of Fig. 3(fro: 35.497 GHz, fzr: 35.5 GHz, and fir:
1,2: 3 MHz).

V. Millimeter-wave Near-Field Sensing of
a Ka-Band Antenna

The two sideband spectra provided by the EQ probe
sensor contain minute levels of the RF sideband com-
ponents. The two dominant beating regions(within the
circles in Fig. 6) of the millimeter-wave-scale difference
frequency of |LO-RF] yield sub-sonic IF components at
a frequency of 3 MHz. The overall IF is a constructive
summation of IF; and IF,. The 35.497 GHz of the
frequency-doubled LO is used to attain a 3-MHz IF
when compared with the 35.5-GHz signal frequency of
half of the Ka-band 8x2 antenna array(Fig. 7(a)).

The amplitude of the resulting down-mixed 3-MHz
RF signal(transverse near-field components), demodula-
ted in the low-frequency photodetector, are plotted versus

array with 3-dB taper

15.4 mm

.
o

feed point

x- componsnt

y- component

i

g. 7. EO amplitude maps of the transverse field compo-
nents of a Ka-band(35.5 GHz) patch-antenna array
(Pw=t5 dBm). (a) Photograph of 4x2 array(the
dashed box is the scan area), (b) x-transverse elec-
tric field distribution, (c) y-transverse electric field
distribution.
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position in Fig. 7 for a 4x2 section of the array. An
SNR of >30 dB was achieved, allowing detailed reso-
lution of the fields along the edges of the antennas and
their feed network.

As expected from the discussion of Fig. 1, the electric
fields diminish as they flow from the feed line to the
farthest array element(It should be noted that the power
flow is proportional to the square of the electric fields,
and thus the actual power diminishes more than it
appears to in Fig. 7). For each individual patch antenna,
the x-components of the adjacent electric fields were
observed to be out-of-phase(not shown), and thus fields
of these polarizations were expected to destructively
combine in the far field. For the y-components of the
electric fields, the spatial field components were found
to be in-phase, constructively combining to yield the
dominant far-field polarization. In array antennas, phase
matching is crucial to enhancing antenna performance.
For this array, matching was realized by meandering the
feed lines to produce the same phase delay among the
sub-array antenna pairs shown in Fig. 2. Thus, the y-com-
ponents of the electric fields in the far field produced by
the array are enhanced, while the x-components are can-
celled out. Further detailed analyses for lower-frequen-
cy antennas, such as in the UHF-I"" X-PHE and K-
bands, have been reported in previous publications.

V. Conclusion

We have presented a simple and efficient high-fre-
quency electro-optic sensing system for a Ka-band micro-
strip array antenna that was designed for wide-range de-
tection of moving targets. The serial-feed unit(2x1 sub-
array) was extended along the E-plane to form a pair of
8x2 arrays with the simultaneous lobing method. The
narrow feeding and impedance phase-matching network
lines for the millimeter-wave antenna were investigated
using the minimally invasive EO sensing technique. The
detailed principle and multi-stage carrier suppression tech-
nique that allowed efficient millimeter-wave EO sensing
were both presented. The measured signal flow of the
current-induced near-electric fields corroborated the perfor-
mance of the unique antenna feed-matching network, as
well as the origin of its far-field radiation.
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