DOI QR코드

DOI QR Code

Machined 티타늄 임플란트와 calcium phosphate coated 티타늄 임플란트의 조직형태계측학적 연구

Histomorphometric study of machined titanium implants and calcium phosphate coated titanium implants

  • 강현주 (서울대학교 치의학대학원) ;
  • 양재호 (서울대학교 치의학대학원 치과보철학교실)
  • Kang, Hyun-Joo (Department of Dentistry, School of Dentistry, Seoul National University) ;
  • Yang, Jae-Ho (Department of Prosthodontics, School of Dentistry, Seoul National University)
  • 투고 : 2010.03.19
  • 심사 : 2010.04.14
  • 발행 : 2010.04.30

초록

연구목적: 본 연구는 machined 임플란트와 골유도능이 있는 calcium phosphate를 electron-beam deposition으로 coating처리한 임플란트의 골/임플란트 접촉률을 조직형태계측학적으로 비교하는 것이다. 연구 재료 및 방법:여섯 마리의 수컷 New Zealand white rabbit과직경3.3 mm, 길이 5 mm의 임플란트 24개를 준비하였다. Machined 임플란트 (대조군)와 calcium phosphate coated 임플란트(실험군)를 좌, 우 경골에 2개씩 총 4개를 식립하고 임플란트 주위에 부하가 가해지지 않도록 하여 3주, 6주의 치유기간을 두었다. 식립 3주와 6주후, 각각 3마리의 토끼를 희생하여 조직시편을 제작하였다. 제작된 시편을 광학현미경 하에서 골/임플란트 접촉률 (BIC ratio)을 계산하고 paired t-test로 두 군을 비교하였다. 결과:골/임플란트 접촉률은 임플란트 식립 3주후, 대조군에서 평균과 표준편차는$44.1{\pm}16.5%$ 이었고 실험군은 $70.8{\pm}18.9%$로 실험군이 통계적으로 유의하게 높았다 (P= 0.0264). 6주후의경우, machined 임플란트는 $78.6{\pm}15.1%$, calcium phosphate coated 임플란트는 $79.0{\pm}26.0%$로 두 군 간 통계적으로 유의한 차이는 없었다. 결론: Calcium phosphate coated 임플란트는 machined 티타늄 임플란트에 비해 빠른 초기 골반응을 나타냈다. 그러므로, 임상적으로 calcium phosphate coated 임플란트를 사용했을 때, 수술 후 치유 기간을 단축하여 조기 부하가 가능할 것으로 사료된다.

Purpose: The objective of this study was to investigate the effects of calcium phosphate coated titanium implant surface on bone response and implant stability at early stage of healing period of 3 weeks and later healing period of 6 weeks. Material and methods: A total of 24 machined, screw-shaped implants (Dentium Co., Ltd., Seoul, Korea) which dimensions were 3.3 mm in diameter and 5.0 mm in length, were used in this research. All implants (n = 24), made of commercially pure (grade IV) titanium, were divided into 2 groups. Twelve implants (n = 12) were machined without any surface modification (control). The test implants (n = 12) were anodized and coated with thin film (150nm) of calcium phosphate by electron-beam deposition. The implants were placed on the proximal surface of the rabbit tibiae. The bone to implant contact (BIC) ratios was evaluated after 3 and 6 weeks of implant insertion. Results: The BIC percentage of calcium phosphate coated implants ($70.8{\pm}18.9%$) was significantly higher than that of machined implants ($44.1{\pm}16.5%$) 3 weeks after implant insertion (P = 0.0264). However, there was no significant difference between the groups after 6 weeks of healing (P > .05). Conclusion: The histomorphometric evaluation of implant surface revealed that; 1. After 3 weeks early healing period, bone to implant contact (BIC) percentage of calcium phosphate coated implants (70.8%) was much greater than that of surface untreated machined implants (44.1%) with P = 0.0264. 2. After 6 weeks healing period, however, BIC percentage of calcium phosphate coated implants group (79.0%) was similar to the machined only implant group (78.6%). There was no statistical difference between two groups (P = 0.8074). 3. We found the significant deference between the control group and experimental group during the early healing period of 3 weeks. But no statistical difference was found between two groups during the later of 6 weeks.

키워드

참고문헌

  1. Eisenbarth E, Velten D, Schenk-Meuser K, Linez P, Biehl V, Duschner H, Breme J, Hildebrand H. Interactions between cells and titanium surfaces. Biomol Eng 2002;19:243-9. https://doi.org/10.1016/S1389-0344(02)00032-1
  2. $Br{\aa}anemark$ PI, Breine U, Adell R, Hansson BO, Lindstrom J, Ohlsson A. Intra-osseous anchorage of dental prostheses. Scand J Plast Reconstr Surg 1969;3:81-100. https://doi.org/10.3109/02844316909036699
  3. Albrektsson T, $Br{\aa}anemark$ PI, Hansson HA, Lindstrom J. Osseointegrated titanium implants. Requirements for ensuring a long-lasting, direct bone-to-implant anchorage in man. Acta Orthop Scand 1981;52:155-70. https://doi.org/10.3109/17453678108991776
  4. Wennerberg A, Albrektsson T, Ulrich H, Krol JJ. An optical three-dimensional technique for topographical descriptions of surgical implants. J Biomed Eng 1992;14:412-8. https://doi.org/10.1016/0141-5425(92)90087-2
  5. Albrektsson T, Sennerby L, Wennerberg A. State of the art of oral implants. Periodontol 2000 2008;47:15-26. https://doi.org/10.1111/j.1600-0757.2007.00247.x
  6. Wennerberg A, Albreksson T, Andersson B. Bone tissue response to commercially pure titanium implants blasted with fine and coarse particles of aluminum oxide. Int J Oral Maxillofac Implants 1996;11:38-45.
  7. Le Gu'ehennec L, Soueidan A, Layrolle P, Amouriq Y. Surface treatments of titanium dental implants for rapid osseointegration. Dent Mater 2007;23:844-54. https://doi.org/10.1016/j.dental.2006.06.025
  8. Vanzillotta PS, Sader MS, Bastos IN, Soares Gde A. Improvement of in vitro titanium bioactivity by three different surface treatments. Dent Mater 2006;22:275-82. https://doi.org/10.1016/j.dental.2005.03.012
  9. Daculsi G, Laboux O, Malard O, Weiss P. Current state of the art of biphasic calcium phosphate bioceramics. J Mater Sci Mater Med 2003;14:195-200. https://doi.org/10.1023/A:1022842404495
  10. Davies JE. Understanding peri-implant endosseous healing. J Dent Educ 2003;67:932-49.
  11. Lee EJ, Lee SH, Kim HW, Kong YM, Kim HE. Fluoridated apatite coatings on titanium obtained by electron-beam deposition. Biomaterials 2005;26:3843-51. https://doi.org/10.1016/j.biomaterials.2004.10.019
  12. Donath K, Breuner G. A method for the study of undecalcified bones and teeth with attached soft tissues. The Sage-Schliff (sawing and grinding) technique. J Oral Pathol 1982;11:318-26. https://doi.org/10.1111/j.1600-0714.1982.tb00172.x
  13. Wagner WC. A Brief Introduction to advanced surface modification technologies. J Oral Implantol 1992;18:231-5.
  14. $Barr\`{e}re$ F, van der Valk CM, Meijer G, Dalmeijer RA, de Groot K, Layrolle P. Osteointegration of biomimetic apatite coating applied onto dense and porous metal implants in femurs of goats. J Biomed Mater Res B Appl Biomater 2003:67:655-65.
  15. Lee JJ, Rouhfar L, Beirne OR. Survival of hydroxyapatite-coated implants: a meta-analytic review. J Oral Maxillofac Surg 2000;58:1372-9. https://doi.org/10.1053/joms.2000.18269
  16. Roberts WE, Smith RK, Zilberman Y, Mozsary PG, Smith RS. Osseous adaptation to continuous loading of rigid endosseous implants. Am J Orthod 1984;86:95-111. https://doi.org/10.1016/0002-9416(84)90301-4
  17. Al-Nawas B, Groetz KA, Goetz H, Duschner H, Wagner W. Comparative histomorphometry and resonance frequency analysis of implants with moderately rough surfaces in a loaded animal model. Clin Oral Implants Res 2008;19:1-8.
  18. Albrektsson T, Jacobsson M. Bone-metal interface in osseointegration. J Prosthet Dent 1987;57:597-607. https://doi.org/10.1016/0022-3913(87)90344-1