Codonopsis Lanceolata Inhibits Inflammation through Regulation of MAPK in LPS-stimulated RAW264.7 cells

LPS로 유도된 RAW264.7 염증모델에서 MAPK 조절에 의한 양유(羊乳)의 항염증효과

  • Kim, Bum-Hoi (Department of Anatomy, College of Oriental Medicine and Research Institute of Oriental Medicine, Dong-Eui University) ;
  • Lee, Yong-Tae (Department of Oriental Physiology, College of Oriental Medicine and Research Institute of Oriental Medicine, Dong-Eui University) ;
  • Kang, Kyung-Hwa (Department of Oriental Physiology, College of Oriental Medicine and Research Institute of Oriental Medicine, Dong-Eui University)
  • 김범회 (동의대학교 한의과대학 해부학교실 & 한의학 연구소) ;
  • 이용태 (동의대학교 한의과대학 생리학교실 & 한의학 연구소) ;
  • 강경화 (동의대학교 한의과대학 생리학교실 & 한의학 연구소)
  • Received : 2010.01.12
  • Accepted : 2010.01.28
  • Published : 2010.02.25

Abstract

Codonopsis Lanceolata (CL) has been widely used in Oriental medicine for treatment of chronic inflammatory diseases, such as bronchitis, cough, and spasm; however, the mechanism of its anti-inflammatory activity has not been clarified. In this study, therefore, we investigated the inhibitory effect of CL on LPS-induced inflammation. The effect of CL was analyzed by ELISA, RT-PCR and Western blotting in LPS-stimulated RAW264.7 cells. We found that CL suppressed not only the mRNA expression of pre-inflammatory cytokines, inducible nitric oxide synthase (iNOS), and cyclooxygenase (COX)-2, but also the phosphorylation of ERK1/2, JNK1/2 and p38 MAPK. These results suggest that CL exerts an anti-inflammatory effect through the regulation of the mitogen-activated protein kinases (MAPK) pathway, thereby decreasing production of pre-inflammatory cytokines, NO, and PGE2.

Keywords

References

  1. Lawrence, T., Willoughby, D.A., Gilroy, D.W. Anti-inflammatory lipid mediators and insights into the resolution of inflammation Nat. Rev. Immunol. Nat. Rev. Immunol. 2: 787-795, 2002. https://doi.org/10.1038/nri915
  2. Kaplanski, G., Marin, V., Montero-Julian, F., Mantovani, A., Farnarier, C. IL-6: a regulator of the transition from neutrophil to monocyte recruitment during inflammation. Trends Immunol. 24: 25-29, 2003. https://doi.org/10.1016/S1471-4906(02)00013-3
  3. Akira, S., Takeda, K. Toll-like receptor signalling. Nat. Rev. Immunol. 4: 499-511, 2004 https://doi.org/10.1038/nri1391
  4. Gomez, P.F., Pillinger, M.H., Attur, M., Marjanovic, N., Dave, M., Park, J., Bingham, C.O. 3rd, Al Mussawir, H., Abramson, S.B. J. Immunol. 175: 6924-6930, 2005. https://doi.org/10.4049/jimmunol.175.10.6924
  5. Fratkin, J. Chinese Herbal Patent Medicine: The Clinical Desk Reference. Shya Publications, Colorado, 46, 2001.
  6. Cho, K., Kim, S.J., Park, S.H., Kim, S., Park, T. Protective effect of Codonopsis lanceolata root extract against alcoholic fatty liver in the rat. J Med Food. 12(6):1293-1301, 2009. https://doi.org/10.1089/jmf.2009.0085
  7. Kim, M.H., Lee, J., Yoo, D.S., Lee, Y.G., Byeon, S.E., Hong, E.K., Cho, J.Y. Protective effect of stress-induced liver damage by saponin fraction from Codonopsis lanceolata. Arch Pharm Res. 32(10):1441-1446, 2009. https://doi.org/10.1007/s12272-009-2014-3
  8. Joh, E.H., Lee, I.A., Han, S.J., Chae, S., Kim, D.H. Lancemaside A ameliorates colitis by inhibiting NF-kappaB activation in TNBS-induced colitis mice. Int J Colorectal Dis. in press. 2009.
  9. He, X., Kim, S.S., Park, S.J., Seong, D.H., Yoon, W.B., Lee, H.Y., Park, D.S., Ahn, J. Combined Effects of Probiotic Fermentation and High-Pressure Extraction on the Antioxidant, Antimicrobial, and Antimutagenic Activities of Deodeok (Codonopsis lanceolata). J Agric Food Chem. in press.
  10. Byeon, S.E., Choi, W.S., Hong, E.K., Lee, J., Rhee, M.H., Park, H.J., Cho, J.Y. Inhibitory effect of saponin fraction from Codonopsis lanceolata on immune cell-mediated inflammatory responses. Arch Pharm Res. 32(6):813-822, 2009. https://doi.org/10.1007/s12272-009-1601-7
  11. Hinz, B., Brune, K. Cyclooxygenase-2-10 years later. J. Pharmacol. Exp. Ther. 300: 367-375, 2002. https://doi.org/10.1124/jpet.300.2.367
  12. Molloy, R.G., Mannick, J.A., Rodrick, M.L. Cytokines, sepsis and immunomodulation. Br. J. Surg. 80: 289-297, 1993. https://doi.org/10.1002/bjs.1800800308
  13. Kim, K.W., Ha, K.T., Park, C.S., Jin, U.H., Chang, H.W., Lee, C.S., Kim, C.H. Polygonum cuspidatum, compared with baicalin and berberine, inhibits inducible nitric oxide synthase and cyclooxygenase-2 gene expressions in RAW 264.7 macrophages. Vascul. Pharmacol. 47: 99-107, 2007. https://doi.org/10.1016/j.vph.2007.04.007
  14. Forstermann, U., Kleinert, H. Nitric oxide synthase: expression and expressional control of the three isoforms. Naunyn Schmiedebergs Arch. Pharmacol. 352: 351-364, 1995.
  15. Masferrer, J., Zweifel, B.S., Manning, P.T., Hauser, S.D., Leahy, K.M., Smith, W.G., Isakson, P.C. and Seibert, K. Selective inhibition of inducible cyclooxygenase 2 in vivo is antiinflammatory and nonulcerogenic. Proc. Natl. Acad. Sci. 91: 3228-3232, 1994. https://doi.org/10.1073/pnas.91.8.3228
  16. Seibert, K., Zhang, Y., Leahy, K., Hauser, S., Masferrer, J., Perkins, W., Lee, L. and Isakson, P. Pharmacological and biochemical demonstration of the role of cyclooxygenase 2 in inflammation and pain. Proc. Natl. Acad. Sci. USA, 91: 12013-12017, 1994. https://doi.org/10.1073/pnas.91.25.12013
  17. Johnson, G.L., Lapadat, R. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science, 298: 1911-1912, 2002. https://doi.org/10.1126/science.1072682
  18. Robinson, M.J., Cobb, M.H. Mitogen-activated protein kinase pathways. Curr. Opin. Cell Biol. 9: 180-186, 1997. https://doi.org/10.1016/S0955-0674(97)80061-0
  19. Wang, X., Martindale, J.L., Liu, Y., Holbrook, N.J. The cellular response to oxidative stress: influences of mitogen-activated protein kinase signalling pathways on cell survival. Biochem. J. 333: 291-300, 1998. https://doi.org/10.1042/bj3330291
  20. Hidding, U., Mielke, K., Waetzig, V., Brecht, S., Hanisch, U., Behrens, A., Wagner, E., Herdegen, T. The c-Jun N-terminal kinases in cerebral microglia: immunological functions in the brain. Biochem. Pharmacol. 64: 781-788, 2002. https://doi.org/10.1016/S0006-2952(02)01139-5
  21. Waetzig, V., Czeloth, K., Hidding, U., Mielke, K., Kanzow, M., Brecht, S., Goetz, M., Lucius, R., Herdegen, T., Hanisch, U.K. c-Jun N-terminal kinases (JNKs) mediate pro-inflammatory actions of microglia. Glia, 50: 235-246, 2005. https://doi.org/10.1002/glia.20173