Anti-adipogencic Effect of Piper Nigrum Linne

호초(胡椒)의 지방세포 억제 효과

  • Jeong, Hong-Suk (Department of Internal Medicine, College of Korean Medicine, Dongguk University) ;
  • Jeong, Ji-Cheon (Department of Internal Medicine, College of Korean Medicine, Dongguk University)
  • 정홍석 (동국대학교 한의과대학 내과학교실) ;
  • 정지천 (동국대학교 한의과대학 내과학교실)
  • Received : 2010.01.19
  • Accepted : 2010.02.09
  • Published : 2010.02.25

Abstract

Piper nigrum Linne has been used spice as well as herbal medicine in worldwide and has function of anti-oxidant, anti-inflammation, anti-cancer, bioavailability of drugs and etc. In this study, anti-adipogenic activity of Piper nigrum Linne extract and its constituent piperine were investigated in 3T3-L1 differentiation. Adipogenic effects and lipid accumulation in 3T3-L1 was measured by RT-PCR and Oil Red O staining assays respectively in stimulation of Piper nigrum Linne extract and piperine. Piper nigrum Linne and piperine reduced lipid accumulation in 3T3-L1 differentiation and expression of genes associated with adipogenesis such as PPAR${\gamma}$, adipsin, SERBP-1c and LPL. All of taken, anti-adipogenic mechanism of Piper nigrum Linne and piperine were related with regulation of SREBP-1c and PPAR${\gamma}$ expression.

Keywords

References

  1. MacDougald, O.A., Lane, M.D. Transcriptional regulation of gene expression during adipocyte differentiation. Annu Rev Biochem. 64: 345-373, 1995. https://doi.org/10.1146/annurev.bi.64.070195.002021
  2. Trujillo, M.E., Scherer, P.E. Adipose tissue-derived factors: impact on health and disease. Endocr Rev. 27(7):762-778, 2006. https://doi.org/10.1210/er.2006-0033
  3. Gregoire, F.M., Smas, C.M., Sul, H.S. Understanding adipocyte differentiation. Physiol Rev. 78(3):783-809, 1998. https://doi.org/10.1152/physrev.1998.78.3.783
  4. 中醫硏究院 主編. 中醫症狀鑑別診斷學. 北京, 人民衛生出版社, p 43, 1987.
  5. 張介賓. 景岳全書. 上海, 上海科學技術出版社, p 194, 1984.
  6. 焦東海. 全國 第3届 肥胖病 學術交流會論文綜述. 中醫雜誌. 3: 47-48, 1992.
  7. 허수영, 강효신. 비만의 동서의학적 고찰과 치료. 대한한방재활의학회지 7(1):272-286, 1997.
  8. Szallasi, A. Piperine: researchers discover new flavor in an ancient spice. Trends Pharmacol Sci. 26(9):437-439, 2005.
  9. Parmar, V.S., Jain, S.C., Bisht, K.S., Jain, R., Taneja, P., Jha, A., Tyagi, O.D., Prasad, A.K., Wengel, J., Olsen, C.E., et al. Phytochemistry of the genus Piper. Phytochemistry. 46(4):597-673, 1997. https://doi.org/10.1016/S0031-9422(97)00328-2
  10. 이상인. 本草學. 서울, 醫藥社, pp 394-395, 1983.
  11. Bajad, S., Bedi, K.L., Singla, A.K., Johri, R.K. Antidiarrhoeal activity of piperine in mice. Planta Med. 67(3):284-287, 2001. https://doi.org/10.1055/s-2001-11999
  12. Vijayakumar, R.S., Nalini, N. Efficacy of piperine, an alkaloidal constituent from Piper nigrum on erythrocyte antioxidant status in high fat diet and antithyroid drug induced hyperlipidemic rats. Cell Biochem Funct. 24(6):491-498, 2006. https://doi.org/10.1002/cbf.1331
  13. Mujumdar, A.M., Dhuley, J.N., Deshmukh, V.K., Raman, P.H., Naik, S.R. Anti-inflammatory activity of piperine. Jpn J Med Sci Biol. 43(3):95-100, 1990. https://doi.org/10.7883/yoken1952.43.95
  14. Srinivasan, K. Black pepper and its pungent principle-piperine: a review of diverse physiological effects. Crit Rev Food Sci Nutr. 47(8):735-748, 2007. https://doi.org/10.1080/10408390601062054
  15. Lambert, J.D., Hong, J., Kim, D.H., Mishin, V.M., Yang, C.S. Piperine enhances the bioavailability of the tea polyphenol (-)-epigallocatechin-3-gallate in mice. J Nutr. 134(8):1948-1952, 2004. https://doi.org/10.1093/jn/134.8.1948
  16. Sunila, E.S., Kuttan, G. Immunomodulatory and antitumor activity of Piper longum Linn. and piperine. J Ethnopharmacol. 90(2-3):339-346, 2004. https://doi.org/10.1016/j.jep.2003.10.016
  17. Siddiqui, B.S., Gulzar, T., Begum, S., Afshan, F. Piptigrine, a new insecticidal amide from Piper nigrum Linn. Nat Prod Res. 18(5):473-477, 2004. https://doi.org/10.1080/14786410310001608028
  18. Kozukue, N., Park, M.S., Choi, S.H., Lee, S.U., Ohnishi-Kameyama, M., Levin, C.E., Friedman, M. Kinetics of light-induced cis-trans isomerization of four piperines and their levels in ground black peppers as determined by HPLC and LC/MS. J Agric Food Chem. 55(17):7131-7139, 2007. https://doi.org/10.1021/jf070831p
  19. Kaleem, M., Sheema Sarmad, H., Bano, B. Protective effects of Piper nigrum and Vinca rosea in alloxan induced diabetic rats. Indian J Physiol Pharmacol. 49(1):65-71, 2005.
  20. Taqvi, S.I., Shah, A.J., Gilani, A.H. Blood pressure lowering and vasomodulator effects of piperine. J Cardiovasc Pharmacol. 52(5):452-459, 2008. https://doi.org/10.1097/FJC.0b013e31818d07c0
  21. Jin, Z., Borjihan, G., Zhao, R., Sun, Z., Hammond, G.B., Uryu, T. Antihyperlipidemic compounds from the fruit of Piper longum L. Phytother Res. 23(8):1194-1196, 2009. https://doi.org/10.1002/ptr.2630
  22. Faas, L., Venkatasamy, R., Hider, R.C., Young, A.R., Soumyanath, A. In vivo evaluation of piperine and synthetic analogues as potential treatments for vitiligo using a sparsely pigmented mouse model. Br J Dermatol. 158(5):941-950, 2008. https://doi.org/10.1111/j.1365-2133.2008.08464.x
  23. Lee, S.W., Rho, M.C., Park, H.R., Choi, J.H., Kang, J.Y., Lee, J.W., Kim, K., Lee, H.S., Kim, Y.K. Inhibition of diacylglycerol acyltransferase by alkamides isolated from the fruits of Piper longum and Piper nigrum. J Agric Food Chem. 54(26):9759-9763, 2006. https://doi.org/10.1021/jf061402e
  24. Kang, M.H., Won, S.M., Park, S.S., Kim, S.G., Novak, R.F., Kim, N.D. Piperine effects on the expression of P4502E1, P4502B and P4501A in rat. Xenobiotica. 24(12):1195-1204, 1994. https://doi.org/10.3109/00498259409038675
  25. Selvendiran, K., Singh, J.P., Krishnan, K.B., Sakthisekaran, D. Cytoprotective effect of piperine against benzo[a]pyrene induced lung cancer with reference to lipid peroxidation and antioxidant system in Swiss albino mice. Fitoterapia. 74(1-2):109-115, 2003. https://doi.org/10.1016/S0367-326X(02)00304-0
  26. Gulcin, I. The antioxidant and radical scavenging activities of black pepper (Piper nigrum) seeds. Int J Food Sci Nutr. 56(7):491-499, 2005. https://doi.org/10.1080/09637480500450248
  27. Fajas, L., Schoonjans, K., Gelman, L., Kim, J.B., Najib, J., Martin, G., Fruchart, J.C., Briggs, M., Spiegelman, B.M., Auwerx, J. Regulation of peroxisome proliferator-activated receptor gamma expression by adipocyte differentiation and determination factor 1/sterol regulatory element binding protein 1: implications for adipocyte differentiation and metabolism. Mol Cell Biol. 19(8):5495-5503, 1999. https://doi.org/10.1128/MCB.19.8.5495
  28. Kim, J.B., Spiegelman, B.M. ADD1/SREBP1 promotes adipocyte differentiation and gene expression linked to fatty acid metabolism. Genes Dev. 10(9):1096-1107, 1996. https://doi.org/10.1101/gad.10.9.1096
  29. Zhang, L.L., Yan Liu, D., Ma, L.Q., Luo, Z.D., Cao, T.B., Zhong, J., Yan, Z.C., Wang, L.J., Zhao, Z.G., Zhu, S.J., et al. Activation of transient receptor potential vanilloid type-1 channel prevents adipogenesis and obesity. Circ Res. 100(7):1063-1070, 2007. https://doi.org/10.1161/01.RES.0000262653.84850.8b
  30. Middleton, E. Jr., Kandaswami, C., Theoharides, T.C. The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacol Rev. 52(4):673-751, 2000.
  31. Roh, S.W., Kim, J.B. Effects of Polygonati Rhizoma on the Diet-induced Hyperlipidemia in Rats. Korean J Oriental Physiology & Pathology. 22(5):1147-1151, 2008.
  32. Zhang, H., Matsuda, H., Nakamura, S., Yoshikawa, M. Effects of amide constituents from pepper on adipogenesis in 3T3-L1 cells. Bioorg Med Chem Let. 18(11):3272-3277, 2008. https://doi.org/10.1016/j.bmcl.2008.04.052