DOI QR코드

DOI QR Code

Development of a Fiber-optic Noncontact Temperature Sensor for Measuring the Temperature of Cooled Secondary Water in a Nuclear Power Plant

냉각된 원전 2차계통수의 온도측정을 위한 비접촉식 광섬유 온도센서의 개발

  • Yoo, Wook-Jae (School of Biomedical Engineering, Konkuk University) ;
  • Lee, Bong-Soo (School of Biomedical Engineering, Konkuk University) ;
  • Park, Byung-Gi (Department of Energy & Environmental Engineering, Soonchunhyang University) ;
  • Cho, Young-Ho (Department of Radiological Science, Catholic University of Daegu)
  • 유욱재 (건국대학교 의학공학부) ;
  • 이봉수 (건국대학교 의학공학부) ;
  • 박병기 (순천향대학교 에너지환경공학과) ;
  • 조영호 (대구가톨릭대학교 방사선학과)
  • Received : 2010.01.19
  • Accepted : 2010.05.13
  • Published : 2010.05.31

Abstract

Generally, a pH value of secondary water in a nuclear power plant should be estimated after sampling and cooling down. In this process, the measurement of temperature is very important because a pH value is varied according to the temperature of secondary water. In this study, a noncontact fiber-optic temperature sensor using a silver halide optical fiber is fabricated to measure the temperature of cooled secondary water. And we have measured an infrared radiation, which is transferred by a silver halide optical fiber from a heat source, using a thermopile sensor. The relationships between the temperature of a heat source and the output voltage of the fiber-optic temperature sensor according to the change of distance and angle are determined. The measurable temperature range of the fiber-optic temperature sensor is from 25 to $60^{\circ}C$. Based on the results of this study, a noncontact temperature sensor using a silver halide optical fiber can be developed for the temperature measurement of the pH sample in the secondary water system.

원전 2차계통수의 pH를 예측을 위해서는 샘플을 채취, 냉각시킨 후 pH를 측정하게 되는데 이 때 샘플의 온도는 pH를 변화시키는 중요한 요인이 된다. 본 연구에서는 할로겐화 은 광섬유를 이용하여 비접촉식 온도센서를 개발하였고, 열전쌍열을 이용하여 열원으로부터 방출되는 적외선을 측정하였다. 열원과 광섬유 끝단 사이의 거리 및 각도 변화에 따른 광섬유 온도센서의 출력신호를 분석하였으며, 광섬유 온도센서로 측정한 온도범위는 $25{\sim}60^{\circ}C$이다. 본 연구결과를 기초로 원전 2차계통수 pH 샘플의 온도를 측정하기 위해 할로겐화 은 광섬유를 이용한 비접촉식 온도센서의 개발이 가능할 것으로 기대된다.

Keywords

References

  1. S. N. Lvov, X. Y. Zhou, S. M. Ulyanov and A. V. Bandura, "Reference systems for assessing viability and accuracy of pH sensors in high temperature subcritical and supercritical aqueous solutions", Chem. Geol. vol. 167, pp. 105-115, 2000. https://doi.org/10.1016/S0009-2541(99)00203-X
  2. Y. Huh, J.-G. Lee, D. C. Mcphail and K. Kim, "Measurement of pH at Elevated temperatures using the optical indicator acridine", J. Solut. Chem. vol. 22, pp. 651-661, 1993. https://doi.org/10.1007/BF00646784
  3. S. N. Lvov, H. Gao, D. Kouznetsov, I. balachov and D. D. Macdonald, "Potentiometric pH measurements in high subcritical and supercritical aqueous solutions", Fluid Phase Equilib., vol. 150-151, pp. 515-523, 1998. https://doi.org/10.1016/S0378-3812(98)00298-2
  4. A. Dybko, W. Wroblewski, E. Rozniecka, J. Maciejewski and Z. Brzozka, "Comparison of thermochromic solutions for fibre optic temperature probes", Sens. Actuators, vol. 76, pp. 203-207, 1999. https://doi.org/10.1016/S0924-4247(99)00030-8
  5. J. K. Seo, W. J. Yoo, D. H. Cho, K. W. Jang, J. Y. Heo, B. Lee and Y.-K. Koh, "Characteristic analysis of a thermochromic material based fiber-optic temperature sensor for measuring temperature of subsurface water", J. Kor. Sensors Soc., vol. 18, pp. 467-474, 2009. https://doi.org/10.5369/JSST.2009.18.6.467
  6. F. J. G. Moreda, F. J. Arregui, M. Achaerandio and I. R. Matias, "Study of indicators for the development of fluorescence based optical fiber temperature sensors", Sens. Actuators B, vol. 118, pp. 425-432, 2006. https://doi.org/10.1016/j.snb.2006.04.079
  7. C. Fernandez-Valdivielso, I. R. Matias and F. J. Arregui, "Simultaneous measurement of strain and temperature using a fiber bragg grating and a thermochromic material", Sens. Actuators A, vol. 101, pp. 107-116, 2002 https://doi.org/10.1016/S0924-4247(02)00188-7
  8. B. Lee, W. J. Yoo, D. H. Cho, K. W. Jang, S.C. Chung and G.-R. Tack, "Low-temperature radiometric measurements using a silver halide optical fiber and infrared optical devices", Opt. Rev, vol. 14, pp. 355-357, 2007. https://doi.org/10.1007/s10043-007-0355-z
  9. A. Zur and A. Katzir, "Fibers for low- temperature radiometric measurements", Appl. Opt. vol. 26, pp. 1201-1206, 1987. https://doi.org/10.1364/AO.26.001201
  10. W. J. Yoo, D. H. Cho, S.-C. Chung, G.-R. Tack, J. H. Jun, B. Lee, S. H. Son and S. Cho, "Feasibility study on the development of noncontact temperature sensor using infrared optical fiber", J. Kor. Sensors Soc., vol. 15, pp. 197-185, 2006. https://doi.org/10.5369/JSST.2006.15.3.179
  11. M. Shimizu and S. Kachi, "Low-temperature radiometer using infrared fiber", Proc. SPIE, vol. MS 9, pp. 275-276, 1983.
  12. W. J. Yoo, D. H. Cho, K. W. Jang, S. H. Shin, J. K. Seo, S.C. Chung, B. Lee, B. G. Park, J. H. Moon, Y.H, Cho and S. Kim, "Infrared radiation thermometer using a silver halide optical fiber for thermal ablation", Opt. Rev, vol. 16, pp. 386-390, 2009.

Cited by

  1. Development of a fiber-optic temperature sensor for remote measurement of the water temperature in a spent nuclear fuel pool vol.66, pp.10, 2015, https://doi.org/10.3938/jkps.66.1495