DOI QR코드

DOI QR Code

Effects of Thickness on Structural and Optical Properties of ZnO Thin Films Fabricated by Spin Coating Method

스핀코팅 방법으로 제작된 ZnO 박막의 두께에 따른 구조적 및 광학적 특성

  • Yim, Kwang-Gug (Department of Nano Systems Engineering, Inje University) ;
  • Kim, Min-Su (Department of Nano Systems Engineering, Inje University) ;
  • Kim, Ghun-Sik (Department of Nano Systems Engineering, Inje University) ;
  • Choi, Hyun-Young (Department of Nano Systems Engineering, Inje University) ;
  • Jeon, Su-Min (Department of Nano Systems Engineering, Inje University) ;
  • Cho, Min-Young (Department of Nano Systems Engineering, Inje University) ;
  • Kim, Hyeoung-Geun (Department of Nano Systems Engineering, Inje University) ;
  • Lee, Dong-Yul (Samsung LED) ;
  • Kim, Jin-Soo (Division of Advanced Materials Engineering, Chonbuk National University) ;
  • Kim, Jong-Su (Department of Physics, Yeungnam University) ;
  • Lee, Joo-In (Advanced Instrument Technology Center, Korea Research Institute of Standards and Science) ;
  • Leem, Jae-Young (Department of Nano Systems Engineering, Inje University)
  • 임광국 (인제대학교 나노시스템공학과) ;
  • 김민수 (인제대학교 나노시스템공학과) ;
  • 김군식 (인제대학교 나노시스템공학과) ;
  • 최현영 (인제대학교 나노시스템공학과) ;
  • 전수민 (인제대학교 나노시스템공학과) ;
  • 조민영 (인제대학교 나노시스템공학과) ;
  • 김형근 (인제대학교 나노시스템공학과) ;
  • 이동율 (삼성 LED) ;
  • 김진수 (전북대학교 신소재공학부) ;
  • 김종수 (영남대학교 물리학과) ;
  • 이주인 (한국표준과학연구원) ;
  • 임재영 (인제대학교 나노시스템공학과)
  • Received : 2010.05.13
  • Accepted : 2010.07.09
  • Published : 2010.07.30

Abstract

Thickness effects on the structural and optical properties of ZnO thin films fabricated by spin coating method have been carried out. With increase in the thickness of the ZnO thin films, the width and density of striation shape are increased. The ZnO thin film with thickness of 450 nm has a smooth surface morphology. For the ZnO thin film with a smooth surface, orientation factor ${\alpha}_{(002)}$ is sharply increased and FWHM of (002) diffraction peak is decreased compared to the ZnO thin films with a striation shape surface. Thickness and surface morphology of the ZnO thin films hardly affect the NBE peak position. However, the DLE peak position is blue-shifted as the surface morphology is changed from striation to smooth surface. The PL intensity ratio of the NBE to DLE is increased and the FWHM of NBE peak is decreased as the thickness of the ZnO thin films is increased.

스핀코팅 방법으로 제작된 ZnO 박막의 두께에 따른 구조적 및 광학적 특성에 관한 연구를 수행하였다. ZnO 박막의 두께가 두꺼워짐에 따라 줄무늬 모양의 폭과 밀도가 증가하고, 두께가 450 nm 일 때 줄무늬 모양은 사라지며 표면이 매끄러워졌다. ZnO 박막의 표면이 매끄러워졌을 때 orientation factor ${\alpha}_{(002)}$가 급격히 증가하였고, (002) 회절 피크의 FWHM (full width at half maximum)는 감소하였다. ZnO 박막의 NBE (near-band edge emission) 피크의 위치는 두께와 표면 형태의 영향을 거의 받지 않았으나, 매끄러운 표면을 갖는 ZnO 박막의 DLE (deep level emission) 피크의 위치는 청색편이 하였다. ZnO 박막의 두께가 증가함에 따라 DLE 피크에 대한 NBE 피크의 발광세기 비율이 증가하는 경향을 보였고, NBE 피크의 FWHM은 감소하는 경향을 보였다.

Keywords

References

  1. D. C. Kim, J. H. Lee, H. K. Cho, J. H. Kim, and J. Y. Lee, Cryst. Growth Des. 10, 321 (2010). https://doi.org/10.1021/cg900907d
  2. D. Basak, G. Amin, B. Mallik, G. K. Paul, and S. K. Sen, J. Crystal Growth 256, 73 (2003). https://doi.org/10.1016/S0022-0248(03)01304-6
  3. P. Nunes, D. Costa, E. Fortunato, and R. Martins, Vacuum 64, 293 (2002). https://doi.org/10.1016/S0042-207X(01)00323-2
  4. D. K. Hwang, S. H. Kang, J. H. Lim, E. J. Yang,J. Y. Oh, J. H. Yang, and S. J. Parkl, Appl. Phys. Lett. 86, 222101 (2005). https://doi.org/10.1063/1.1940736
  5. A. Mitra, R. K. Thareja, V. Ganesan, A. Gupta, P. K. Sahoo, and V. N. Kulkarni, Appl. Surf. Sci. 174, 232 (2001). https://doi.org/10.1016/S0169-4332(01)00171-4
  6. R. Groenen, J. Loffler, P. M. Sommeling, J. L. Linden, E. A. G. Hamers, R. E. I. Schropp, and M. C. M. van de Sanden, Thin Solid Films 392, 226 (2001). https://doi.org/10.1016/S0040-6090(01)01032-X
  7. L. Hadjeris, L. Herissi, M. B. Assouar, T. Easwarakhanthan, J. Bougdira, N. Attaf, and M. S. Aida, Semicond. Sci. Technol. 24, 035006 (2009). https://doi.org/10.1088/0268-1242/24/3/035006
  8. M. S. Kim, T. H. Kim, D. Y. Kim, G. S. Kim, H. Y. Choi, M. Y. Cho, S. M. Jeon, J. S. Kim, J. S. Kim, D. Y. Lee, J. S. Son, J. I. Lee, J. H. Kim, E. Kim, D. W. Hwang, and J. Y. Leem, J. Crystal Growth 311, 3568 (2009). https://doi.org/10.1016/j.jcrysgro.2009.05.010
  9. S. Roy and S. Basu, Bull. Mater. Sci. 25, 513 (2002). https://doi.org/10.1007/BF02710540
  10. K. B. Sundaram and A. Khan, Thin Solid Films 295, 87 (1997). https://doi.org/10.1016/S0040-6090(96)09274-7
  11. 김영환, 김성일, 한국진공학회지 18, 358 (2009).
  12. 김희수, 한국진공학회지 18, 384 (2009).
  13. K. R. Murali, J. Phys. Chem. Solids 68, 2293 (2007). https://doi.org/10.1016/j.jpcs.2007.06.006
  14. P. P. Sahay, S. Tewari, and R. K. Nath, Cryst. Res. Technol. 42, 723 (2007). https://doi.org/10.1002/crat.200610895
  15. S. Ilican, Y. Caglar, and M. Caglar, J. Optorlrctron. Adv. M. 10, 2578 (2008).
  16. J. Zhao, Z. G. Jin, T. Li, and X. X. Liu, J. Eur. Ceram. Soc. 26, 2769 (2006). https://doi.org/10.1016/j.jeurceramsoc.2005.07.062
  17. B. Z. Dong and G. J. Fang, J. Appl. Phys. 101, 033713 (2007). https://doi.org/10.1063/1.2437572
  18. D. Bao, H. Gu, and A. Kuang, Thin Solid Films 312, 37 (1998). https://doi.org/10.1016/S0040-6090(97)00302-7
  19. Q. Chen, Y. Qian, Z. Chen, G. Zhou, and Y. Zhang, Mater. Lett. 22, 93 (1995). https://doi.org/10.1016/0167-577X(94)00212-6
  20. S. A. Studeninkin, N. Golego, and M. Cocivera, J. Appl. Phys. 84, 2287 (1998). https://doi.org/10.1063/1.368295
  21. M. S. Wang, E. J. Kim, J. S. Chung, E. W. Shin, S. H. Hahn, K. E. Lee, and C. H. Park, Phys. Stat. Sol. A, 203, 2418 (2006). https://doi.org/10.1002/pssa.200521398
  22. X. L. Wu, G. G. Siu, C. L. Fu, and H. C. Ong, Appl. Phys. Lett. 78, 2285 (2001). https://doi.org/10.1063/1.1361288
  23. A. Toumiat, S. Achour, A. Harabi, N. Harabi, N. Tabet, M. Boumaour, and M. Maallemi, Nanotechnology 17, 658, (2006). https://doi.org/10.1088/0957-4484/17/3/007
  24. B. Ha, H. Ham, and C. J. Lee, J. Phys. Chem. Solids 69, 2453 (2008). https://doi.org/10.1016/j.jpcs.2008.04.041
  25. H. M. Zhong, W. Lu, Y. Sun, and Z. F. Li, Chin. Phys. Lett. 24(9), 2678 (2007).
  26. C. Bekeny, T. Voss, B. Hilker, J. Gutowski, R. Hauschild, H. Kalt, B. Postels, A. Bakin, and A. Waag, J. Appl. Phys. 102, 044908 (2007). https://doi.org/10.1063/1.2773632
  27. J. M. Myoung, W. H. Yoon, D. H. Lee, I. Yun, S. H. Bae, and S. Y. Lee, Jpn. J. Appl. Phys. 41, 28 (2002). https://doi.org/10.1143/JJAP.41.28

Cited by

  1. Fabrication of LiMn2O4Thin-Film Rechargeable Batteries by Sol-Gel Method and Their Electrochemical Properties vol.20, pp.3, 2011, https://doi.org/10.5757/JKVS.2011.20.3.205
  2. Effects of Precursor Concentration on Surface and Optical Properties of ZnO Nano-Fibrous Thin Films Fabricated by Spin-Coating Method vol.19, pp.6, 2010, https://doi.org/10.5757/JKVS.2010.19.6.483