DOI QR코드

DOI QR Code

A Survey of Robotic Technologies for Diagnosis and Treatment of Prostate Cancer

전립선 암 진단 및 치료를 위한 로봇기술 응용 현황

  • Ahn, Bum-Mo (Korea Advanced Institute of Science and Technology) ;
  • Park, Ki-Han (Korea Advanced Institute of Science and Technology) ;
  • Lee, Hyo-Sang (Korea Advanced Institute of Science and Technology) ;
  • Kim, Jung (Korea Advanced Institute of Science and Technology)
  • Received : 2010.06.10
  • Accepted : 2010.07.20
  • Published : 2010.09.01

Abstract

Robotic techniques can be one of the promised solutions to address the prostate cancer which is one of the most important public health problems in medical fields. Despite several past and on-going dedicated researches, the systematic techniques and completed theories have not been established well. Therefore we review the state-of-the-art literature on the applications of engineering technologies with particular focus on diagnosis and treatment of prostate cancer. The current status of the elastography and systematic DRE are presented as novel diagnostic tools, and an overview of the applied technologies to address the limits of the treatment (radical prostectomy and brachytherapy) is reviewed.

Keywords

References

  1. American Cancer Society, “Cancer facts and figures 2008,” Atlanta, Ga: American Cancer Society, 2008.
  2. A. Jemal, R. Siegel, E. Ward, Y. Hao, J. Xu, T. Murray, and M. J. Thun, “Cancer statistics,” CA Cancer Journal for Clinicians, vol. 58, pp. 71-96, 2008. https://doi.org/10.3322/CA.2007.0010
  3. S. K. Park, L. C. Sakoda, D. Kang, A. P. Chokkalingam, E. Lee, H. R. Shin, Y. O. Ahn, M. H. Shin, C. W. Lee, D. H. Lee, A. Blair, S. S. Devesa, and A. W. Hsing, “Rising prostate cancer rates in South Korea,” The Prostate, vol. 66, no. 12, pp. 1285-1291, Sep. 2006. https://doi.org/10.1002/pros.20419
  4. K. S. Ross, H. B. Carter, J. D. Pearson, and H. A. Guess, “Comparative efficiency of prostate-specific antigen screening strategies for prostate cancer detection,” JAMA, vol. 284, pp. 1399-1405, 2000. https://doi.org/10.1001/jama.284.11.1399
  5. L. S. Lim and K. Sherin, “Screening for prostate cancer in U.S. men ACPM position statement on preventive practice,” Am J Prev Med, vol. 34, pp. 164-170, 2008. https://doi.org/10.1016/j.amepre.2007.10.003
  6. National Cancer Information Service, http://www.cancer.gov/aboutnci/cis
  7. L. S. Borden Jr., J. L. Wright, J. Kim, K. Latchamsetty, and C. R. Porter, “An abnormal digital rectal examination is an independent predictor of Gleason ${\geq}7$ prostate cancer in men undergoing initial prostate biopsy: a prospective study of 790 men,” Br J Urol, vol. 99, pp. 559-563, 2007. https://doi.org/10.1111/j.1464-410X.2006.06647.x
  8. G. Fichtinger, J. Fiene, C. W. Kennedy, G. Kronreif, I. I. Iordachita, D. Y. Song, E. C. Burdette, and P. Kazanzides, “Robotic assistance for ultrasound-guided prostate brachytherapy,” Medical image analysis, vol. 12, pp. 535-545, 2008. https://doi.org/10.1016/j.media.2008.06.002
  9. L. Potters, C. Morgenstern, E. Calugaru, P. Fearn, A. Jassal, J. Presser, and E. Mullen, “12-year outcomes following permanent prostate brachytherapy in patients with clinically localized prostate cancer,” The Journal of Urology, vol. 173, pp. 1562-1566, 2005. https://doi.org/10.1097/01.ju.0000154633.73092.8e
  10. S. J. Khaksar, R.W. Laing, A. Henderson, P. Sooriakumaran, D. Lovell, and S. E. M. Langley, “Biochemical (prostate-specific antigen) relapse-free survival and toxicity after 125I low-doserate prostate brachytherapy,” BJU International, vol. 98, pp. 1210-1215, 2006. https://doi.org/10.1111/j.1464-410X.2006.06520.x
  11. J. Crook, N. Fleshner, C. Roberts, and G. Pond, “Long-term urinary sequelae following 125Iodine prostate brachytherapy,” The Journal of Urology, vol. 179, pp. 141-146, 2008.
  12. M. Tanaka, M. Furubayashi, Y. Tanahashi, and S. Chonan, “Development of an active palpation sensor for detecting prostatic cancer and hypertrophy,” Smart Mater Struct, vol. 9, pp. 878-884, 2000. https://doi.org/10.1088/0964-1726/9/6/319
  13. M. Tanaka, H. Nesori, and Y. Tanahashi, “Development of an active palpation sensor wearable on a finger for detecting prostate cancer and hypertrophy,” Ann of NanoBME, vol. 1, pp. 141-147, 2008.
  14. B. Ahn, J. Kim, E. I. S. Lorenzo, K. Rha, and H. Kim, “Mechanical property characterization of prostate cancer using a minimally motorized indenter in an Ex vivo indentation experiment,” Urology, In Press, 2010.
  15. J. Ophir, I. Cespedes, H. Ponnekanti, Y. Yazdi, and X. Li, “Elastography: a quantitative method for imaging the elasticity of biological tissues,” Ultrasonic Imaging, vol. 13, pp. 111-134, 1991. https://doi.org/10.1016/0161-7346(91)90079-W
  16. J. Braun, K. Braun, and I. Sack, “Electromagnetic actuator for generating variably oriented shear waves in MR elastography,” Magn Reson Med, vol. 50, no. 1, pp. 220-222, 2003. https://doi.org/10.1002/mrm.10479
  17. Q. C. Chan, G. Li, R. L. Ehman, R. C. Grimm, R. Li, and E. S. Yang, “Needle shear wave driver for magnetic resonance elastography,” Magn Reson Med, vol. 55, no. 5, pp. 1175-1179, 2006. https://doi.org/10.1002/mrm.20856
  18. M. Suga, T. Matsuda, K. Minato, O. Oshiro, K. Chihara, J. Okamoto, O. Takizawa, M. Komori, and T. Takahashi, “Measurement of in-vivo local shear modulus by combining multiple phase offsets MR elastography,” Medinfo, vol. 10, pp. 933-937, 2001.
  19. T. Wu, J. P. Felmlee, J. F. Greenleaf, S. J. Riederer, and R. L. Ehman, “MR imaging of shear waves generated by focused ultrasound,” Magn Reson Med., vol. 43, no. 1, pp. 111-115, 2000. https://doi.org/10.1002/(SICI)1522-2594(200001)43:1<111::AID-MRM13>3.0.CO;2-D
  20. O. Bieri, S. Maderwald, M. E. Ladd, and K. Scheffler, “Balanced alternating steady-state elastography,” Magn Reson Med., vol. 55, no. 2, pp. 233-241, 2006. https://doi.org/10.1002/mrm.20812
  21. C. J. Lewa, M. Roth, L. Nicol, J. M. Franconi, and J. D. de Certaines, “A new fast and unsynchronized method for MRI of viscoelastic properties of soft tissues,” J Magn Reson Imaging, vol. 12, no. 5, pp. 784-789, 2000. https://doi.org/10.1002/1522-2586(200011)12:5<784::AID-JMRI18>3.0.CO;2-Z
  22. A. Manduca, T. E. Oliphant, M. A. Dresner, J. L. Mahowald, S. A. Kruse, E. Amromin, J. P. Felmlee, J. F. Greenleaf, and R. L. Ehman, “Magnetic resonance elastography: non-invasive mapping of tissue elasticity,” Med Image Anal., vol. 5, no. 4, pp. 237-254, 2001. https://doi.org/10.1016/S1361-8415(00)00039-6
  23. S. Maderwald, K. Uffmann, C. J. Galban, A. de Greiff, and M. E. Ladd, “Accelerating MR elastography: a multiecho phasecontrast gradient-echo sequence,” J Magn Reson Imaging ,vol. 23, no. 5, pp. 774-780, 2006. https://doi.org/10.1002/jmri.20570
  24. S. Papazoglou, J. Rump, J. Braun, and I. Sack, “Shear wave group velocity inversion in MR elastography of human skeletal muscle,” Magn Reson Med., vol. 56, no. 3, pp. 489-497, 2006. https://doi.org/10.1002/mrm.20993
  25. E. Park and A. M. Maniatty, “Shear modulus reconstruction in dynamic elastography: time harmonic case,” Phys Med Biol., vol. 51, no. 15, pp. 3697-3721, 2006. https://doi.org/10.1088/0031-9155/51/15/007
  26. A. J. Romano, P. B. Abraham, P. J. Rossman, J. A. Bucaro, and R. L. Ehman, “Determination and analysis of guided wave propagation using magnetic resonance elastography,” Magn Reson Med., vol. 54, no. 4, pp. 893-900, 2005. https://doi.org/10.1002/mrm.20607
  27. K. J. Glaser, J. P. Felmlee, A. Manduca, and R. L. Ehman, “Shear stiffness estimation using intravoxel phase dispersion in magnetic resonance elastography,” Magn Reson Med., vol. 50, no. 6, pp. 1256-1265, 2003. https://doi.org/10.1002/mrm.10641
  28. T. E. Oliphant, A. Manduca, R. L. Ehman, and J. F. Greenleaf, “Complex-valued stiffness reconstruction for magnetic resonance elastography by algebraic inversion of the differential equation,” Magn Reson Med., vol. 45, no. 2, pp. 299-310, 2001. https://doi.org/10.1002/1522-2594(200102)45:2<299::AID-MRM1039>3.0.CO;2-O
  29. G. Salomon, J. Kollerman, I. Thederan, F. K. H. Chun, L. Budaus, T. Schlomm, H. Isbarn, H. Heinzer, H. Huland, and M. Graefen, “Evaluation of prostate cancer detection with ultrasound real-time elastography: A comparison with step section pathological analysis after radical prostatectomy,” European Urology, vol. 54, no. 6, pp. 1354-1362, 2008. https://doi.org/10.1016/j.eururo.2008.02.035
  30. K. König, U. Scheipers, A. Pesavento, A. Lorenz, H. Ermert, and T. Senge, “Initial experiences with real-time elastography guided biopsies of the prostate,” The Journal of Urology, vol. 174, pp. 115-117, 2005. https://doi.org/10.1097/01.ju.0000162043.72294.4a
  31. N. Miyanaga, H. Akaza, M. Yamakawa, T. Oikawa, N. Sekido, S. Hinotsu, K. Kawai, T. Shimazui, and T. Shina, “Tissue elasticity imaging for diagnosis of prostate cancer : A preliminary report,” International Journal of Urology, vol. 13, no. 12, pp. 1514-1518, 2006. https://doi.org/10.1111/j.1442-2042.2006.01612.x
  32. L. Pallwein, F. Aigner, R. Faschingbauer, E. Pallwein, G. Pinggera, G. Bartsch, G. Schaefer, P. Struve, and F. Frauscher, “Prostate cancer diagnosis value of real time elastography,” Abdom Imaging, vol. 33, pp. 729-735, 2008. https://doi.org/10.1007/s00261-007-9345-7
  33. K. Hoyt, B. Castaneda, M. Zhang, P. Nigwekar, P. A. di Sant’Agnese, J. V. Joseph, J. Strang, D. J. Rubens, and K. J. Parker, “Tissue elasticity properties as biomarkers for prostate cancer,” Cancer Biomarkers, vol. 4, pp. 213-225, 2008. https://doi.org/10.3233/CBM-2008-44-505
  34. F. Aigner, L. Pallwein, A. Pelzer, G. Schaefer, G. Bartsch, D. Z. Nedden, and F. Frauscher, “Value of magnetic resonance imaging in prostate cancer diagnosis,” World J Urol., vol. 25, pp. 351-359, 2007. https://doi.org/10.1007/s00345-007-0187-2
  35. C. G. L. Cao, M. Zhou, D. B. Jones, and S. D. Schwaitzberg, “Can surgeons think and operate with haptics at the same time?,” Journal of Gastrointest Surg, vol. 11, no. 11, pp. 1564-1569, Nov. 2007. https://doi.org/10.1007/s11605-007-0279-8
  36. C. R. Wagner and R. D. Howe, “Force feedback benefit depends on experience in multiple degree of freedom robotic surgery task,” IEEE Transactions on Robotics, vol. 23, no. 6, pp. 1235-1240, Dec. 2007. https://doi.org/10.1109/TRO.2007.904891
  37. M. Mahvash, J. Gwilliam, R. Agarwal, and A. Okamura, “Force-feedback surgical teleoperator: controller design and palpation experiments,” Proc. of the16th Symposium on Haptic Interfaces for Virtual Environments and Teleoperator Systems, pp. 465-471, 2008.
  38. S. Schostek, C. N. Ho, D. Kalanovic, and M. O. Schurr, “Artificial tactile sensing in minimally invasive surgery - a new technical approach,” Minimally invasive therapy & allied technologies, vol. 15, no. 5, pp. 296-304, 2006. https://doi.org/10.1080/13645700600836299
  39. C. Wottawa, R. E. Fan, C. E. Lewis, B. Jordan, O. Martin, S. Warren, Grundfest, and E.P. Dutson, “Laparoscopic grasper with an integrated tactile feedback system,” Complex Medical Engineering, 2009. CME. ICME International Conference on, pp. 1-5, 2009.
  40. B. Kuebler, U. Seibold, and G. Hirzinger, “Development of actuated and sensor integrated forceps for minimally invasive surgery,” International Journal of Medical Robot. Computer Assisted Surgery, vol. 1, no.3, pp. 96-107, 2005. https://doi.org/10.1002/rcs.33
  41. J. Dargahi, M. Parameswaran, and S. Payandeh, “A micromachined piezoelectric tactile sensor for an endoscopic grasper - theory, fabrication and experiments,” Journal of microelectromechanical systems, vol. 9, no. 3, pp. 329-335, Sep. 2000. https://doi.org/10.1109/84.870059
  42. J. Peirs, J. Clijnen, D. Reynaerts, H. V. Brussel, P. Herijgers, B. Corteville, and S. Boone, “A micro optical force sensor for force feedback during minimally invasive robotic surgery,” Sensors and Actuators A, vol. 115, no. 2-3, pp. 447-455, Sep. 2004. https://doi.org/10.1016/j.sna.2004.04.057
  43. J. Arata, M. Mitsuishi, S. Warisawa, K. Tanaka, T. Yoshizawa, and M. Hashizume, “Development of a dexterous minimallyinvasive surgical system with augmented force feedback capability,” IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3738-3743, 2005.
  44. J. Ding, K. Xu, R. Goldman, P. Allen, D. Fowler, and N. Simaan, “Design, Simulation and Evaluation of Kinematic Alternatives for Insertable Robotic Effectors Platforms in Single Port Access Surgery,” Proceedings of the IEEE International Conference on Robotics and Automation, pp. 1053-1058, 2010.
  45. M. Muntener, A. Patriciu, D. Petrisor, D. Mazilu, H. Bagga, L. Kavoussi, K. Cleary, and D. Stoianovici, “Magnetic resonance imaging compatible robotic system for fully automated brachytherapy seed placement,” Urology, vol. 68, pp. 1313-1317, 2006. https://doi.org/10.1016/j.urology.2006.08.1089
  46. D. Stoianovici, D. Song, D. Petrisor, D. Ursu, D. Mazilu, M. Mutener, M. Schar, and A. Patriciu, “MRI stealth robot for prostate interventions,” Minimally Invasive Therapy, vol. 16, no. 4, pp. 241-248, 2007. https://doi.org/10.1080/13645700701520735
  47. G. Fichtinger, J. P. Fiene, C. W. Kennedy, G. Kronreif, I. Iordachita, D. Y. Song, E. C. Burdette, and P. Kazanzides, “Robotic assistance for ultrasound-guided prostate brachytherapy,” Medical Image Analysis. vol. 12, pp. 535-545, 2008. https://doi.org/10.1016/j.media.2008.06.002
  48. H. S. Bassan, R. V. Patel, and M. Moallem, “A novel manipulatior for percutaneous needle insertion: Design and experimentation, IEEE/ASME Transactions on Mechatronics, vol. 14, no. 6, pp. 746-761, Dec. 2009. https://doi.org/10.1109/TMECH.2009.2011357
  49. K. M, Pondman, J. J. Futterer, B. T. Haken, L. J. S. Kool, J. A. Witjes, T. Hambrock, K. J. Macuar, and J. O. Barentsz, “MRguided biopsy of the prostate: an overview of techniques and a systematic review,” European urology, vol. 54, pp. 517-527, 2008. https://doi.org/10.1016/j.eururo.2008.06.001
  50. B. L. Davies, S. J. Harris, E. Dibble, “Brachytherapy-an example of a urological minimally invasive robotic procedure,” Int J Medical Robotics and Computer Assisted Surgery, vol. 1, no. 1, pp. 88-96, 2004. https://doi.org/10.1002/rcs.10
  51. Z. Wei, G. Wan, L. Gardi, G. Mills, D. Downey, and A. Fenster, “Robot-assisted 3D-TRUS guided prostate brachytherapy: System integration and validation,” Med. Phys., vol. 31, no. 3, pp. 539-548, 2004. https://doi.org/10.1118/1.1645680
  52. Y. Yu, T. Podder, Y. Zhang, W. S. Ng, V. Misic, J. Sherman, L. Fu, D. Fuller, E. Messing, D. Rubens, J. Strang, and R. Brasacchio, “Robot-assisted prostate brachytherapy” MICCAI 2006, pp. 41-49, 2006.
  53. A. Krieger, R. C. Susil, C. Menard, J. A. Coleman, G. Fichtinger, E. Atalar, and L. L. Whitcome, “Design of a novel MRI compatible manipulator for image guided prostate interventions,” IEEE Transactions on Biomedical Engineering, vol. 52, no. 2, pp. 306-313, Feb. 2005. https://doi.org/10.1109/TBME.2004.840497