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Approximate Numerical Reflection Coefficient of Isotropic-Dispersion
Finite-Difference Time-Domain(ID-FDTD) Scheme at the Planar
Dielectric Interface for the TM Wave

Pingping Deng - 1l-Suek Koh

Abstract

This paper presents an analytical formulation of the numerical reflection coefficient of the ID-FDTD scheme at the
planar dielectric boundary for a TM wave incidence. The reflection coefficient is formulated in an approximate manner,
and the accuracy of this method is numerically verified. The effective dielectric constant for a grid on the interface
is obtained, and then reduced to that of the Yee scheme for a small cell size.
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I . Introduction

The standard finite-difference time-domain(FDTD) sche-
me, introduced by Yee in 1966, was the first technique
in the direct time-domain solutions of Maxwell’s diffe-
rential equation on spatial grids or lattices, and has re-
mained the subject of continuous development. The FDTD
scheme employs the central finite difference equation to
approximate the spatial and temporal derivatives in
Maxwell’s equations. It provides many advantages, such
as low computational complexity, great flexibility, and
easy implementation!. Since the modeling capabilities
afforded by the FDTD scheme and related techniques
have been recognizes, the interest in this area has ex-
panded beyond defense technology. The FDTD method
has been used intensively and widely to simulate electro-
magnetic wave phenomena. In recent decades, it has been
applied in a variety of fields including electromagnetics,
biology, materials science and optics[”.

However, the standard FDTD scheme(Yee scheme)
undergoes "numerical dispersion” that causes numerical
wave propagation at different phase velocities along diffe-
rent directions, which prevents the scheme from being
applied to large scale or phase-sensitive problems. Se-
veral schemes have been proposed to rectify this nume-
rical dispersion problem. A simple approach known as
the ID-FDTD scheme has been proposed to drastically
reduce the dispersion error'”. It is based on a weighted
summation of two different finite difference approxima-
tions for the spatial derivative, and can adjust the
numerical phase velocity using the scaling factor".

Since more field sampling points on the Yee grid are

ID-FDTD Scheme, Reflection Coefficient, Effective Dielectric Constant.

used to reduce the anisotropy dispersion error for the
ID-FDTD scheme, the fields on the material(dielectric or
conductor) boundary should be calculated by using the
fields inside and outside the material boundary as seen
in Fig. 1. Therefore, the behavior of the ID-FDTD sche-
me is not clearly characterized at the material interface.
The objective of this paper is to demonstrate that the
ID-FDTD scheme can properly deal with the material
boundary based on the analytical formulation of the
numerical reflection coefficient of the ID-FDTD scheme
for a TM polarized incidence wave.
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Fig. 1. Two-dimensional Yee grid for the TM mode with
the planar dielectric boundary.
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Section II, the numerical reflection coefficient is for-
mulated and in. Section I, the obtained coefficient is
numerically verified and the accuracy of the coefficient
is examined.

II. Numerical Reflection Coefficient for
the TM Polarized Wave

Fig. 1 shows two dielectric half-spaces in the FDTD
grid for a TM wave with the numerical wave vector &;
and the frequency w,. Here, i=1 and 2 indicates the
different dielectric half-spaces. The wave vectors of the
reflected and the transmitted waves are given by k. and
k:, respectively. The numerical dispersion equation [2]
can be expressed in each half-space as
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where %7, is the numerical wave number along p di-
rection. A is the grid step for the x- and y-axes and Af
is the time step. ki and k; are the x- and y-com-
ponents of the numerical wave vector. sc and g, are
the scaling factor and the free-space permeability,
respectively. ¢; and o, are the electrical permittivity
and the weighting factor, respectively, in the material
with the index i.
From the phase matching condition, it can be obtained
that
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ki and ks can be numerically calculated using
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In each of the two media, the electromagnetic fields
are denoted as H, Hn, Ex, Eu, E,, and Ey,. For a
plane-wave incidence, the Isotropic-dispersion Finite-di-
fference(ID-FD) of the electric field can be represented as

E] xf=—j—§,‘ sin—sz(l—a,»sin ZLZA)%):—J'KX_E‘ ,
T?y_l%:—j—z" sin—kZA 1—a;sin ZiSA)E):—jKy—E),
d fE:j—AZ; sm——g— E=—;QF.

where 7, is the ID-FD operator with p=x, y, or ¢

The Ampere’s law and Faraday's law from a plane
wave can be written as
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where “QZ_AZ? sin22L and K=K %+ K,y. There-

fore, the components of the electric and magnetic fields
are related as

K K
__ fiy — X

E;=—"otH. E,= o H,

jQuH,=— 3 ,E,+ 0 ,E,. (%)

and the dispersion relationship is simply written as

Q%u=K%+ K%.

Therefore, the fields in the discretized domain have
similar expressions to those in the continuous domain. The
numerical reflection coefficient can be easily formulated
by following the procedure for the continuous domain
using the FDTD update equation instead of Maxwell's
equation itsel 1],

The incident, reflected, and transmitted magnetic field
can be written as
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where R, and T, are the numerical reflection and
transmission coefficients, respectively.

Thus, the total field in medium 1 is the sum of the
incidence and reflected waves represented as
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The total field in medium 2 is written in terms of the
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Fig. 2. Two-dimensional Yee grid for the TM mode.
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transmitted field, as

—i(Ck ymix+h na)
Hpy=Tme " °* N

E., = £2_L — i CE pma + % na)
x2

- Qe , T rye

K AR e 1

- 2 HCk pms + 7% yns)
Eyz = Qe ) T T™ME . (7)
It can be observed that only E, nodes are present at

the interface. Thus, the tangential electric field(E,) must
be continuous:

Ey s=0= Eyp 4—p-

Using (6) and (7), the following relation can be
obtained:

_ oKy
Toy= e Ko, (1+R 7). (8)
To compute Hz1(—‘§1,0) or H22<12L,0>, we need
E; and E, both be present in the two media as seen in
Fig. 2. However, it is difficult to solve H,, E, and E,

simultaneously based on the ID-FDTD update equation.

So to calculate H (- él,o), for example, the dielectric

constant of the Yee grid in Fig. 2 is assumed ¢ 1> and
for sz(—é’-,()), €, is assumed. Then, an approximate
expression of R ., can be obtained. For H, ——4,0 ,
(5) is discretized and (6), (7) and (8) are substituted into
(5), and then (9) can be obtained.
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After simplifying (9), the magnetic field expression is
obtained as
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At the E, node on the dielectric interface, the ID-
FDTD update equation can be used, so that (12) can be
formulated.

7€ yigE ) —9g=—"9 H ] .-,

kA
(l—alsin Q‘ZL)HZI 4
2

kA
—(l—alsinZ#)Hzl _
T

- 4 ' (12)

where & mig 18 the effective permittivity for the Yee grid
on the interface.

After substituting (10) and, (11) into (12), and simp-
lifying the equation, the numerical reflection coefficient
is simply written as
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For real ¢, and ¢,, R, should be real. From the re-
quirement, is determined ¢, as
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For this case, R ,, is simplified to
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For ¢, = a,=0(Yee scheme), the effective dielectric
constant (13) and the reflection coefficient (14) are
reduced to those of the Yee scheme™ as
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For small A, it can be observed that
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The effective dielectric constants for the ID-FDTD and
Yee schemes are different as (13) is a function of the
FDTD parameters such as incidence angle, A and At

However, ¢ = i%l + 0O(a) can be simply proven.
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Fig. 3. Comparison of the reflection coefficients when CPW
=25, 51=1 and 52=10.
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Fig. 4. Comparison of the reflection coefficients when CPW
=15 and 5121 and 32=2.

Hence, for real FDTD simulation situations, ¢, can be

approximated as '5—%1, which is that for the Yee
scheme.

Il. Numerical Results

Fig. 3 and 4 give the comparison of the reflection
coefficients calculated by two formulations, (13) for the
ID-FDTD scheme and (14) for Yee scheme. For Fig. 3,
S(courant number)=0.5, CPW(Cell Per Wavelength)=25,
e,=1,and ¢,=10 are assumed. For Fig. 4, CPW=15,
e,=1, and ¢,=2 are used. The results of the ID-
FDTD and Yee schemes are very close to the exact re-
sults: however, it can be seen that the ID-FDTD scheme
will provide slightly more accurate results than the Yee
scheme. Fig. 5 gives the comparison of the absolute
error of effective dielectric constants between the
ID-FDTD and Yee schemes. The error is defined as
error = | € pia= € mid - In Fig. 5, it can be seen that

the error is very small and decreases with increasing
dielectric constant, as expected.

IV. Conclusions

Analysis of the numerical properties of the ID-FDTD
scheme for a material interface was performed. The
approximate analytical expression is obtained for the
reflection coefficient of the ID-FDTD scheme in a TM
wave. The formulated coefficient can be reduced to that
of the Yee scheme for 4,=4,=0. The formulated re-
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Fig. 5. Comparison for the effective dielectric constants.

flection coefficient is verified numerically based on two
simulations. The ID-FDTD scheme can provide slightly
more accurate results than the Yee scheme. In addition,
the effective dielectric coefficient for the grid on the in-
terface is formulated, which can be approximated by
that of the Yee scheme.
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