DOI QR코드

DOI QR Code

Hyperosmotic Stimulus Down-regulates $1{\alpha}$, 25-dihydroxyvitamin $D_3$-induced Osteoclastogenesis by Suppressing the RANKL Expression in a Co-culture System

  • Tian, Yu-Shun (Department of Oral Biology, Yonsei University) ;
  • Jeong, Hyun-Joo (Department of Oral Biology, Yonsei University) ;
  • Lee, Sang-Do (Department of Physiology, College of Medicine, Chungnam National University) ;
  • Kong, Seok-Heui (Department of Orthodontics, Yonsei University) ;
  • Ohk, Seung-Ho (Department of Oral Microbiology, College of Dentistry, Chonnam National University) ;
  • Yoo, Yun-Jung (Department of Oral Biology, Yonsei University) ;
  • Seo, Jeong-Taeg (Department of Oral Biology, Yonsei University) ;
  • Shin, Dong-Min (Department of Oral Biology, Yonsei University) ;
  • Sohn, Byung-Wha (Department of Orthodontics, Yonsei University) ;
  • Lee, Syng-Ill (Department of Oral Biology, Yonsei University)
  • Received : 2010.05.12
  • Accepted : 2010.06.07
  • Published : 2010.06.30

Abstract

The hyperosmotic stimulus is regarded as a mechanical factor for bone remodeling. However, whether the hyperosmotic stimulus affects $1{\alpha}$, 25-dihydroxyvitamin $D_3$ ($1{\alpha},25(OH)_2D_3$)-induced osteoclastogenesis is not clear. In the present study, the effect of the hyperosmotic stimulus on $1{\alpha},25(OH)_2D_3$-induced osteoclastogenesis was investigated in an osteoblast-preosteoclast co-culture system. Serial doses of sucrose were applied as a mechanical force. These hyperosmotic stimuli significantly evoked a reduced number of $1{\alpha},25(OH)_2D_3$-induced tartrate-resistant acid phosphatase-positive multinucleated cells and $1{\alpha},25(OH)_2D_3$-induced bone-resorbing pit area in a co-culture system. In osteoblastic cells, receptor activator of nuclear factor ${\kappa}B$ ligand (RANKL) and Runx2 expressions were down-regulated in response to $1{\alpha},25(OH)_2D_3$. Knockdown of Runx2 inhibited $1{\alpha},25(OH)_2D_3$-induced RANKL expression in osteoblastic cells. Finally, the hyperosmotic stimulus induced the overexpression of TonEBP in osteoblastic cells. These results suggest that hyperosmolarity leads to the down-regulation of $1{\alpha},25(OH)_2D_3$-induced osteoclastogenesis, suppressing Runx2 and RANKL expression due to the TonEBP overexpression in osteoblastic cells.

Keywords

References

  1. Teitelbaum SL. Bone resorption by osteoclasts. Science. 2000;289:1504-1508. https://doi.org/10.1126/science.289.5484.1504
  2. Karsenty G, Wagner EF. Reaching a genetic and molecular understanding of skeletal development. Dev Cell. 2002;2:389-406. https://doi.org/10.1016/S1534-5807(02)00157-0
  3. Suda T, Takahashi N, Martin TJ. Modulation of osteoclast differentiation. Endocr Rev. 1992;13:66-80.
  4. Takahashi M, Kushida K, Naitou K. The degree of osteoporosis in patients with vertebral fracture and patients with hip fracture: relationship to incidence of vertebral fracture. J Bone Miner Metab. 1999;17:187-194. https://doi.org/10.1007/s007740050083
  5. Tsukii K, Shima N, Mochizuki S, Yamaguchi K, Kinosaki M, Yano K, Shibata O, Udagawa N, Yasuda H, Suda T, Higashio K. Osteoclast differentiation factor mediates an essential signal for bone resorption induced by 1 alpha,25-dihydroxyvitamin D3, prostaglandin E2, or parathyroid hormone in the microenvironment of bone. Biochem Biophys Res Commun. 1998;246:337-341. https://doi.org/10.1006/bbrc.1998.8610
  6. Boyle WJ, Simonet WS, Lacey DL. Osteoclast differentiation and activation. Nature. 2003;423:337-342. https://doi.org/10.1038/nature01658
  7. Teitelbaum SL, Ross FP. Genetic regulation of osteoclast development and function. Nat Rev Genet. 2003;4:638-649. https://doi.org/10.1038/nrg1122
  8. Katagiri T, Takahashi N. Regulatory mechanisms of osteoblast and osteoclast differentiation. Oral Dis. 2002;8:147-159. https://doi.org/10.1034/j.1601-0825.2002.01829.x
  9. Kitazawa S, Kitazawa R. RANK ligand is a prerequisite for cancer-associated osteolytic lesions. J Pathol. 2002;198:228-236. https://doi.org/10.1002/path.1199
  10. Takayanagi H, Iizuka H, Juji T, Nakagawa T, Yamamoto A, Miyazaki T, Koshihara Y, Oda H, Nakamura K, Tanaka S. Involvement of receptor activator of nuclear factor kappaB ligand/osteoclast differentiation factor in osteoclastogenesis from synoviocytes in rheumatoid arthritis. Arthritis Rheum. 2000;43:259-269. https://doi.org/10.1002/1529-0131(200002)43:2<259::AID-ANR4>3.0.CO;2-W
  11. Rodan GA, Martin TJ. Role of osteoblasts in hormonal control of bone resorption--a hypothesis. Calcif Tissue Int. 1981;33:349-351. https://doi.org/10.1007/BF02409454
  12. Lacey DL, Timms E, Tan HL, Kelley MJ, Dunstan CR, Burgess T, Elliott R, Colombero A, Elliott G, Scully S, Hsu H, Sullivan J, Hawkins N, Davy E, Capparelli C, Eli A, Qian YX, Kaufman S, Sarosi I, Shalhoub V, Senaldi G, Guo J, Delaney J, Boyle WJ. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell. 1998;93:165-176. https://doi.org/10.1016/S0092-8674(00)81569-X
  13. Burgess JR, David R, Greenaway TM, Parameswaran V, Shepherd JJ. Osteoporosis in multiple endocrine neoplasia type 1: severity, clinical significance, relationship to primary hyperparathyroidism, and response to parathyroidectomy. Arch Surg. 1999;134:1119-1123. https://doi.org/10.1001/archsurg.134.10.1119
  14. Kong YY, Feige U, Sarosi I, Bolon B, Tafuri A, Morony S, Capparelli C, Li J, Elliott R, McCabe S, Wong T, Campagnuolo G, Moran E, Bogoch ER, Van G, Nguyen LT, Ohashi PS, Lacey DL, Fish E, Boyle WJ, Penninger JM. Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand. Nature. 1999;402:304-309. https://doi.org/10.1038/46303
  15. Bao X, Clark CB, Frangos JA. Temporal gradient in shear-induced signaling pathway: involvement of MAP kinase, c-fos, and connexin43. Am J Physiolo Heart Circ Physiol. 2000;278:H1598-H1605. https://doi.org/10.1152/ajpheart.2000.278.5.H1598
  16. Breen EC. Mechanical strain increases type I collagen expression in pulmonary fibroblasts in vitro. J Appl Physiol. 2000;88:203-209. https://doi.org/10.1152/jappl.2000.88.1.203
  17. Chen NX, Ryder KD, Pavalko FM, Turner CH, Burr DB, Qiu J, Duncan RL. $Ca^{2+}$ regulates fluid shear-induced cytoskeletal reorganization and gene expression in osteoblasts. Am J Physiol Cell Physiol. 2000;278:C989-997. https://doi.org/10.1152/ajpcell.2000.278.5.C989
  18. Klein-Nulend J, Helfrich MH, Sterck JG, MacPherson H, Joldersma M, Ralston SH, Semeins CM, Burger EH. Nitric oxide response to shear stress by human bone cells cultures is endothelial nitric oxide synthase dependent. Biochem and Biophys Res Commun. 1998;250:108-114. https://doi.org/10.1006/bbrc.1998.9270
  19. Kreke MR, Huckle WR, Goldstein AS. Fluid flow stimulates expression of osteopontin and bone soialoprotein by bone marrow stromal cells in a temporally dependent manner. Bone. 2005;36:1047-1055. https://doi.org/10.1016/j.bone.2005.03.008
  20. Ingber DE. Tensegrity II. How structural networks influence cellular information processing networks. J Cell Sci. 2003;116:1397-1408. https://doi.org/10.1242/jcs.00360
  21. McGarry J, Klein-Nulend J, Prendergast PJ. The effect of cytoskeletal disruption on pulsatile fluid flow-induced nitric oxide and prostaglandin E(2) in ostocytes and ostoblast. Biochem Biophys Res Commun. 2005;330:341-348. https://doi.org/10.1016/j.bbrc.2005.02.175
  22. Yoshigi M, Hoffman LM, Jensen CC, Yost HJ, Beckerle MC. Mechanical force mobilizes zyxin from focal adhesions to actin filaments and regulates cytoskeletla reinforcement. J Cell Biol. 2005;171:209-215. https://doi.org/10.1083/jcb.200505018
  23. Miller SS, Wolf AM, Arnaud CD. Bone cells in culture: morphologic transformation by hormones. Science. 1976;192:1340-1343. https://doi.org/10.1126/science.1273593
  24. Bowler WB, Buckley KA, Gartland A, Hipskind RA, Bilbe G, Gallagher JA. Extracellular nucleotide signaling: a mechanism for integrating local and systemic responses in the activation of bone remodeling. Bone. 2001;28:507-512. https://doi.org/10.1016/S8756-3282(01)00430-6
  25. Marcus R. Normal and abnormal bone remodeling in man. Annu Rev Med. 1987;38:129-141. https://doi.org/10.1146/annurev.me.38.020187.001021
  26. Choi BK, Ohk SH, Lee HJ, Kang JH, Jeong GJ, Yoo YJ. Effects of whole cell sonicates of Treponema lecithinolyticum on osteoclast differentiation. J Periodontol. 2001;72:1172-1177. https://doi.org/10.1902/jop.2000.72.9.1172
  27. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65:55-63. https://doi.org/10.1016/0022-1759(83)90303-4
  28. Tsai TT, Danielson KG, Guttapalli A, Oguz E, Albert TJ, Shapiro IM, Risbud MV. TonEBP/OREBP is a regulator of nucleus pulposus cell function and survival in the intervertebral disc. J Biol Chem. 2006;281:25416-25424. https://doi.org/10.1074/jbc.M601969200
  29. Takatsuna H, Asagiri M, Kubota T, Oka K, Osada T, Sugiyama C, Saito H, Aoki K, Ohya K, Takayanagi H, Umezawa K. Inhibition of RANKL-induced osteoclastogenesis by (-)-DHMEQ, a novel NF-kappaB inhibitor, through downregulation of NFATc1. J Bone Miner Res. 2005;20:653-662.
  30. Kitazawa R, Kitazawa S, Maeda S. Promoter structure of mouse RANKL/TRANCE/OPGL/ODF gene. Biochim Biophys Acta. 1999;1445:134-141. https://doi.org/10.1016/S0167-4781(99)00032-9
  31. Guilak F. Compression-induced changes in the shape and volume of the chondrocyte nucleus. J Biomech. 1995;28:1529-1541. https://doi.org/10.1016/0021-9290(95)00100-X
  32. Tsai TT, Danielson KG, Guttapalli A, Oguz E, Albert TJ, Shapiro IM, Risbud MV. TonEBP/OREBP is a regulator of nucleus pulposus cell function and survival in the intervertebral disc. J Biol Chem. 2006;281:25416-24. https://doi.org/10.1074/jbc.M601969200
  33. Tsuzuki T, Okabe K, Kajiya H, Habu T. Osmotic membrane stretch increases cytosolic $Ca^{2+}$ and inhibits bone resorption activity in rat osteoclasts. Jpn J Physiol. 2000;50:67-76. https://doi.org/10.2170/jjphysiol.50.67
  34. Zayzafoon M, Stell C, Irwin R, McCabe LR. Extracellular glucose influences osteoblast differentiation and c-jun expression. J Cell Biochem. 2000;79:301-310. https://doi.org/10.1002/1097-4644(20001101)79:2<301::AID-JCB130>3.0.CO;2-0
  35. Geoffroy V, Kneissel M, Fournier B, Boyde A, Matthias P. High bone resorption in adult aging transgenic mice overexpressing cbfa1/runx2 in cells of the osteoblastic lineage. Mol Cell Biol. 2002;22:6222-6233. https://doi.org/10.1128/MCB.22.17.6222-6233.2002
  36. Komori T, Yagi H, Nomura S, Yamaguchi A, Sasaki K, Deguchi K, Shimizu Y, Bronson RT, Gao YH, Inada M, Sato M, Okamoto R, Kitamura Y, Yoshiki S, Kishimoto T. Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell. 1997;89:755-764. https://doi.org/10.1016/S0092-8674(00)80258-5
  37. Notoya M, Otsuka E, Yamaguchi A, Hagiwara H. Runx-2 is not essential for the vitamin D-regulated expression of RANKL and osteoprotegerin in osteoblastic cells. Biochem Biophys Res Commun. 2004;324:655-660. https://doi.org/10.1016/j.bbrc.2004.09.101
  38. O'Brien CA, Kern B, Gubrij I, Karsenty G, Manolagas SC. Cbfa1 does not regulate RANKL gene activity in stromal/osteoblastic cells. Bone. 2002;30:453-462. https://doi.org/10.1016/S8756-3282(01)00692-5
  39. Sarkadi B, Parker JC. Activation of ion transport pathways by changes in cell volume. Biochim Biophys Acta. 1991;1071:407-427. https://doi.org/10.1016/0304-4157(91)90005-H