DOI QR코드

DOI QR Code

Synthesis of High-Quality Single-Walled Carbon Nanotube Fibers by Vertical CVD

수직 가열로를 이용한 고순도 단일벽 탄소나노튜브 섬유의 합성

  • Kim, Tae-Min (BK21 Physics Research Division and Department of Energy Science, Sungkyunkwan University) ;
  • Song, Woo-Seok (BK21 Physics Research Division and Department of Energy Science, Sungkyunkwan University) ;
  • Kim, Yoo-Seok (BK21 Physics Research Division and Department of Energy Science, Sungkyunkwan University) ;
  • Kim, Soo-Youn (BK21 Physics Research Division and Department of Energy Science, Sungkyunkwan University) ;
  • Choi, Won-Chel (Electronic Materials Research Center, Korea Institute of Science & Technology (KIST)) ;
  • Park, Chong-Yun (BK21 Physics Research Division and Department of Energy Science, Sungkyunkwan University)
  • 김태민 (BK21 물리연구단 에너지과학과 성균관대학교) ;
  • 송우석 (BK21 물리연구단 에너지과학과 성균관대학교) ;
  • 김유석 (BK21 물리연구단 에너지과학과 성균관대학교) ;
  • 김수연 (BK21 물리연구단 에너지과학과 성균관대학교) ;
  • 최원철 (재료연구부 전자재료센터 한국과학기술연구원) ;
  • 박종윤 (BK21 물리연구단 에너지과학과 성균관대학교)
  • Received : 2010.07.26
  • Accepted : 2010.09.06
  • Published : 2010.09.30

Abstract

Many routes have been developed for the synthesis of signle-walled carbon nanotubes (SWCNTs). We spun fibers of SWCNTs directly from vertical furnace using a liquid source of carbon and an iron-contained molecule. The solution was prepared by ethanol as a carbon source, in which ferrocene as a catalyst, thiophene were dissolved. It was then injected from the top of the furnace into hot zone with hydrogen as a carrier gas. We successfully synthesized high-quality SWCNTs by adjusting the various experimental conditions, such as concentration of ferrocene, solution injection rate, concentration of thiophene, and hydrogen flow rate. Measurement of Raman spectroscopy, scanning electron microscopy, and transmission electron microscopy were carried out to find the optimized conditions. The synthesized SWCNTs (1.16~1.64 nm) appeared a bundle structure and well-aligned parallel to the direction of furnace. These results also provide an simple way for high-quality SWCNTs mass production and fabricating direct spining SWCNTs fiber. It will allow one-step production of SWCNTs fiber with potentially excellent properties and wide-range applications.

본 연구에서는 수직 가열로(vertical furnace)를 이용하여 $1150^{\circ}C$의 온도에서 섬유형태의 고순도 단일벽 탄소나노튜브(singlewalled carbon nanotubes)를 합성하였다. 탄소나노튜브의 구조에 영향을 미치는 실험 변수인 페로센(ferrocene)의 농도, 혼합용액의 주입 속도, 싸이오펜(thiophene)의 농도, 수소($H_2$)의 주입 양을 조절하여 고순도의 단일벽 탄소나노튜브 섬유의 최적화 된 대량 합성 조건을 확립하였다. 또한 각 요인들이 탄소나노튜브의 생성에 미치는 영향에 대해 논의하였다. 분석 결과, 최적화 된 조건에서 1.16~1.64 nm의 직경을 가진 고순도의 단일벽 탄소나노튜브가 다발(bundle) 구조로 정렬되어 있음을 확인할 수 있었다.

Keywords

References

  1. R. Saito, G. Dresselhaus, and M. S. Dresselhaus, "Physical Properties of Carbon Nanotubes" Imperial College, London (1998). https://doi.org/10.1103/PhysRevLett.86.1118
  2. Dresselhaus, Phys. Rev. Lett. 86, 1118 (2001). https://doi.org/10.1103/PhysRevLett.86.1118
  3. A. Javey, J. Guom, Q. Wang, M. Lundstrom, and H. Dai, Nature 424, 654 (2003). https://doi.org/10.1038/nature01797
  4. Q. Cao, M. -G. Xia, M. S. Shim, and A. Rogers, Adv. Funct. Mater. 16, 2335-2362 (2006). https://doi.org/10.1063/1.2165205
  5. D. Ferrer, T. Tanii, I. Matsuya, G. Zhong, S. Okamoto, and H. Kawarada, Appl. Phy. Lett. 88, 033116 (2006). https://doi.org/10.1063/1.2165205
  6. J. U. Lee, Appl. phy. 87, 073101 (2005). https://doi.org/10.1016/j.cplett.2006.03.017
  7. D. Kondo, S. Sato, and Y. Awano, Chem. Phys. Lett. 422, 481-487 (2006). https://doi.org/10.1016/j.cplett.2006.03.017
  8. E. F. Kukovisky, S. G. Lvov, and N. A. Sainov, Chem. Phys. Lett. 317, 65 (2000). https://doi.org/10.1016/S0009-2614(99)01299-3
  9. Y. Ando, X. Zhao, H. Kataura, Y. Achiba, K. Kaneto, M. Tsuruta, S. Uemura, and S. Iijima, Diamond Relat. Mater. 9, 847 (2000). https://doi.org/10.1016/S0925-9635(99)00363-5
  10. N. Demoncy, O. Stephan, N. Brun, C. Colliex, A. Liseau, and H. Pascard, Synth. Met. 103, 2380 (1990). https://doi.org/10.1016/S0009-2614(00)00235-9
  11. Liu, T. Wagberg, E. Olssen, R. Yang, H. Li, S. Zhang, H. Yang, G. Zou, and B. Sundqvist, Chem. Lett. 320, 365 (2000). https://doi.org/10.1016/S0009-2614(00)00235-9
  12. Z. Shi, Y. Lian, X. Zhou, Z. Gu, Y. Zhang, S. Iijima, H. Li, K. T. Yue, and S. Zhang, J. Phys. Chem. B. 103, 8698 (1999). https://doi.org/10.1021/jp991531g
  13. C. H. Kiang, J. Phys. Chem. A. 104, 2454 (2000). https://doi.org/10.1021/jp991451c
  14. W. K. Maser, E. Munoz, A. M. Benito, M. T. Martinez, G. F. Fuente, Y. Maniette, E. Anglaret, and A. Righi, Chem. Phys. Lett. 292, 587 (1998). https://doi.org/10.1016/S0009-2614(98)00776-3
  15. M. Yudasaka, T. Komatsu, T. Ichihashi, and S. Iijima, Chem. Phys Lett. 278, 102 (1997). https://doi.org/10.1016/S0009-2614(97)00952-4
  16. M. Yudasaka, M. Zhang, and S. Iijima, Chem. Phys. Lett. 323, 549 (2000). https://doi.org/10.1016/S0009-2614(00)00535-2
  17. M. S. Dresselhaus, G. Dresselhaus, and P. Eklund, "Science of Fullerenes and Carbon Nanotubes", Academic Press, San Diego (1996). https://doi.org/10.1126/science.1060928
  18. R. Baughman, A. Zakhidov, and W. de Heer, Science 297, 787 (2002). https://doi.org/10.1126/science.1060928
  19. M. Terrones, J. Endo, A. Rao, Y. Kim, T. Hayashi, J. -C. Charlier, G. Dresselhaus, and M. Dresselhaus, Mater. Today 30 (2004). https://doi.org/10.5757/JKVS.2007.16.5.377
  20. W. Song, W. C. Choi, C. Jeon, D. H. Ryu, S. Y. Lee, Y. S. Shin, and C. -Y. Park, J. Korean Vac. Soc. 16, 377 (2007) https://doi.org/10.5757/JKVS.2007.16.5.377
  21. Y. S. Kim, W. S. Song, S. Y. Lee, W. C. Choi, and C. Y. Park, J. Korean Vac. Soc. 18, 229 (2009) https://doi.org/10.5757/JKVS.2009.18.3.229
  22. Y. Li, I. Kinloch, and A. H. Windle, Science 304, 276 (2004). https://doi.org/10.1126/science.1094982
  23. K. Koziol and A. H. Windle, Science 318, 1892 (2007). https://doi.org/10.1126/science.1147635
  24. A. Jorio, R. Saito, J. H. Hafner, C. M. Lieber, M. Hunter, T. McClure, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rev. Lett. 86, 1118 (2001). https://doi.org/10.1103/PhysRevLett.86.1118
  25. A. M. Rao, A. Jorio, M. A. Pimenta, M. S. S. Dantas, R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rev. Lett. 84, 1820 (2000). https://doi.org/10.1103/PhysRevLett.84.1820
  26. M. S. Motta, A. Moisala, I. A. Kinloch, and A. H. Windle, J. Nanosci. Nanotechnol. 8, 2442 (2008). https://doi.org/10.1166/jnn.2008.500

Cited by

  1. Improvement of Electron Emission Characteristics and Emission Stability from Metal-coated Carbon Nanotubes vol.20, pp.6, 2011, https://doi.org/10.5757/JKVS.2011.20.6.436
  2. Self Annealing Effects of Arsenic Ion Implanted Amorphous Carbon Films during Microwave Plasma Chemical Vapor Deposition vol.22, pp.1, 2013, https://doi.org/10.5757/JKVS.2013.22.1.31