Conversion Efficiency of Dye-sensitized Solar Cells Using Multi-layered $TiO_2$ Electrodes

다층구조의 $TiO_2$ 전극을 이용한 염료감응형 태양전지의 변환효율

  • Received : 2010.01.19
  • Accepted : 2010.02.22
  • Published : 2010.06.10

Abstract

Recently, the design of the multi-layered $TiO_2$ electrodes has been attracted for high efficiency of dye-sensitized solar cells. In this study, conversion efficiency of the multi-layered $TiO_2$ electrodes was investigated by using small and large $TiO_2$ nanoparticles. Nanostructured $TiO_2$ powders were prepared by $TiCl_4$ hydrolysis. Differently sized $TiO_2$ powders of which the average diameter was 7.6 and 18 nm were obtained by controlled calcination temperature. It was confirmed that multi-layered $TiO_2$ electrodes significantly influence short-circuit current (Jsc) and also show higher conversion efficiency than dye-sensitized solar cells consisting of each particles.

최근 고효율 염료감응형 태양전지를 위한 다층구조의 $TiO_2$ 전극에 대한 연구가 관심을 받고 있다. 본 연구에서는 입자의 크기가 작고 큰 $TiO_2$로 이루어진 다층구조의 $TiO_2$ 전극에 대해 연구하였다. 나노구조를 갖는 $TiO_2$ 분말은 $TiCl_4$를 가수분해하여 합성하였다. 크기가 7.6 nm 및 18 nm인 $TiO_2$ 분말은 소성온도를 조절하여 얻었다. 다층구조를 갖는 $TiO_2$ 전극이 단락전류(Jsc)에 큰 영향을 미치는 것을 확인하였으며, 또한 다층구조를 갖는 $TiO_2$ 전극이 각각의 입자만을 사용한 염료감응형 태양전지 보다 변환효율이 증가함을 확인하였다.

Keywords

References

  1. B. O'Regan and M. Gratzel, Nature, 353, 737 (1991). https://doi.org/10.1038/353737a0
  2. H. Wang, J. He, G. Boschloo, H. Lindstrom, A. Hagfeldt, and S. E. Lindquist, J. Phys. Chem. B., 105, 2529 (2001). https://doi.org/10.1021/jp0036083
  3. S. Hore, E. Palomares, H. Smit, N. J. Bakker, P. Comte, P. Liska, K. Ravindranathan Thampi, J. M. Kroon, A. Hinsch, and J. R. Durrant, J. Mater. Chem., 15, 412 (2005). https://doi.org/10.1039/b407963a
  4. S. Ito, T. Kitamura, Y. Wada, and S. Yanagida, Solar Energy Mater. Solar Cells, 76, 3 (2003). https://doi.org/10.1016/S0927-0248(02)00209-X
  5. S. Y. Huang, G. Schlichthorl, A. J. Nozik, M. Gratzel, and A. J. Frank, J. Phys. Chem. B, 101, 2576 (1997). https://doi.org/10.1021/jp962377q
  6. J. Nissfolk, K. Fredin, A. Hagfeldt, and G. Boschloo, J. Phys. Chem. B, 110, 17715 (2006). https://doi.org/10.1021/jp064046b
  7. H.-J. Koo, J. H. Park, B. J. Yoo, K. C. Yoo, K. K. Kim, and N.-G. Park, Inorg. Chim. Acta, 361, 677 (2008). https://doi.org/10.1016/j.ica.2007.05.017
  8. S. Ito, S. M. Zakeerudiin, R. Humphry-Baker, P. Liska, P. Charvet, P. Comte, M. K. Nazeeruddin, P. Pechy, M. Takata, H. Miura, S. Uchida, and M. Gratzel, Adv. Mater., 18, 1202 (2006). https://doi.org/10.1002/adma.200502540
  9. S. Hore, C. Vetter, R. Kern, H. Smit, and A. Hinsch, Solar Energy Mater. Solar Cells, 90, 1176 (2006). https://doi.org/10.1016/j.solmat.2005.07.002
  10. Z.-S. Wang, H. Kawauchi, T. Kashima, and H. Arakawa, Coordinat. Chem. Rev., 248, 1381 (2004). https://doi.org/10.1016/j.ccr.2004.03.006
  11. Md. K. Nazeeruddin, R. Humphry-Baker, P. Liska, and M. Gratzel, J. Phys. Chem. B, 107, 8981 (2003). https://doi.org/10.1021/jp022656f
  12. W. E. Vargas, J. Appl. Phys., 88, 4079 (2000). https://doi.org/10.1063/1.1289230
  13. J. Y. Bae, T. K. Yun, S. S. Han, B. G. Min, I. Bako, and S.-H. Suh, Rev. Roum. Chim., 54, 773 (2009).
  14. K. M. Lee, V. Suryanarayanan, and K. C. Ho, J. Power Sources, 188, 635 (2009). https://doi.org/10.1016/j.jpowsour.2008.12.002
  15. D. S. Kim, S. J. Han, and S. Y Kwak, J. Colloid Interface Sci., 316, 85 (2007). https://doi.org/10.1016/j.jcis.2007.07.037
  16. H. Wang, J. He, G. Boschloo, H. Lindstrom, A. Hagfeldt, and S. E. Lindquist, J. Phys. Chem. B., 105, 2529 (2001). https://doi.org/10.1021/jp0036083