Preparation of Fe/$Al_2O_3$ Granules for Conversion of Syngas to Light Olefins by Fischer-Tropsch Reaction

합성가스에서 경질올레핀 제조를 위한 피셔-트롭시 반응용 구형 철-알루미나 촉매 합성

  • Lee, Dong-Joon (Clean Energy Center, Korea Institute of Science and Technology) ;
  • Jung, Kwang-Deog (Clean Energy Center, Korea Institute of Science and Technology) ;
  • Yoo, Kye-Sang (Department of Chemical Engineering, Seoul National University of Technology)
  • 이동준 (한국과학기술연구원 청정에너지센터) ;
  • 정광덕 (한국과학기술연구원 청정에너지센터) ;
  • 유계상 (서울산업대학교 화학공학과)
  • Received : 2010.02.12
  • Accepted : 2010.03.02
  • Published : 2010.06.10

Abstract

Fe/$Al_2O_3$ granules with various compositions were prepared by combining sol-gel with oil drop method for Fishcer-Tropsh reaction to produce light olefin from synthesis gas. The granules was characterized and employed as a catalyst in the reaction. The surface area of granules was decreased with increasing Fe concentration. Especially, granule with 1.5 of Al/Fe ratios showed the highest CO conversion. However, the olefin selectivity was hardly affected by Al/Fe ratio. K concentration of granule gave a significant effect on catalytic performance. Initial CO conversion and olefin selectivity were increased with K concentration. However, the catalyst with higher K concentration was deactivated rapidly.

합성가스에서 경질 올레핀을 합성하는 Fishcer-Tropsh 반응을 위하여 다양한 조성을 가지는 구형 철-알루미늄 촉매를 졸-겔 오일법으로 합성하였다. 합성된 구형 촉매를 이용하여 다양한 특성분석 및 반응성능을 측정하였다. 촉매의 비표 면적은 철의 비율이 증가할수록 감소하였고, CO 전환율은 Al/Fe비가 1.5인 촉매가 가장 우수하였다. 올레핀 선택도는 Al/Fe비에 영향을 받지 않았다. 함침법을 이용하여 K를 첨가한 경우 반응특성에 영향을 주었다. 첨가한 K의 농도가 증가할수록 초기 CO 전환율과 올레핀 선택도는 향상됐지만 촉매의 활성도는 급격히 감소하였다.

Keywords

References

  1. Y. Yang, H. W. Xiang, Y. Y. Xu, L. Bai, and Y. W. Li, Appl. Catal. A: Gen., 266, 181 (2004). https://doi.org/10.1016/j.apcata.2004.02.018
  2. C. H. Zhang, Y. Yang, Z. C. Tao, T. Z. Li, H. J. Wan, H. W. Xiang, and Y. W. Li, Acta Phys.-Chim. Sin., 22, 1310 (2006). https://doi.org/10.1016/S1872-1508(06)60064-8
  3. M. E. Dry, Appl. Catal. A: Gen., 138, 319 (1996). https://doi.org/10.1016/0926-860X(95)00306-1
  4. H. Dlamini, T. Motjope, G. Joorst, and M. Mdleleni, Catal. Lett., 78, 201 (2002). https://doi.org/10.1023/A:1014953201451
  5. Y. Yang, H. W. Xiang, L. Tian, H. Wang, C. H. Zhang, Z. C. Tao, Y. Y. Xu, B. Zhong, and Y. W. Li, Appl. Catal. A: Gen., 284, 105 (2005). https://doi.org/10.1016/j.apcata.2005.01.025
  6. D. G. Miller and M. Moskovits, J. Phys. Chem., 92, 6081 (1988). https://doi.org/10.1021/j100332a047
  7. L. Bai, H. W. Xiang, Y. W. Li, Z. Y. Han, and B. Zhong, Fuel, 81, 1577 (2002). https://doi.org/10.1016/S0016-2361(02)00089-3
  8. W. Ma, Y. Ding, V. H. Carreto, V. Guez, and D. B. Bukur, Appl. Catal. A: Gen., 268, 99 (2004). https://doi.org/10.1016/j.apcata.2004.03.024
  9. D. S. Kalakkad, M. D. Shroff, S. Kohler, N. Jackson, and A. K. Datye, Appl. Catal. A: Gen., 133, 335 (1995). https://doi.org/10.1016/0926-860X(95)00200-6
  10. R. Zhao, J. G. Goodwin Jr., K. Jothimurugesan, S. K. Gangwal, and J. J. Spivey, Ind. Eng. Chem. Res., 40, 1065 (2001). https://doi.org/10.1021/ie000644f
  11. R. Zhao, K. Sudsakorn, J. G. Goodwin, K. Jothimurugesan, S. K. Gangwal, and J. J. Spivey, Catal. Today, 71, 319 (2002). https://doi.org/10.1016/S0920-5861(01)00458-8
  12. K. Sudsakorn, J. G. Goodwin Jr., K. Jothimurugesan, and A. A. Adeyiga, Ind. Eng. Chem. Res., 40, 4778 (2001). https://doi.org/10.1021/ie0101442
  13. K. S. Yoo, D. Lee, and K. D. Jung, Trans. of Korean Hydrogen and New Energy Society, 19, 545 (2008).