Antimicrobial Activity and Mechanism of Various Nanoparticles

나노 입자에 의한 미생물 불활성화 특성 및 메카니즘

  • Kim, Jee-Yeon (Department of Civil and Environmental Engineering, University of California) ;
  • Park, Hee-Jin (World Class University (WCU) program of Chemical Convergence for Energy & Environment (C2E2), School of Chemical and Biological Engineering, College of Engineering, Seoul National University (SNU)) ;
  • Yoon, Je-Yong (World Class University (WCU) program of Chemical Convergence for Energy & Environment (C2E2), School of Chemical and Biological Engineering, College of Engineering, Seoul National University (SNU))
  • 김지연 (캘리포니아 주립대학) ;
  • 박희진 (서울대학교 화학생물공학부) ;
  • 윤제용 (서울대학교 화학생물공학부)
  • Received : 2010.03.11
  • Accepted : 2010.05.10
  • Published : 2010.08.10

Abstract

Accompanying the rapid advance of nanotechnology, various nano-particles have shown promise as strong antimicrobial agents against a broad spectrum of microorganisms. These nanoparticles also have potential applications in medical devices, water treatments systems, environmental sensors and so on. However, with increasing concerns about the impact of engineered nanoparticles, many researchers are recently reporting the cytotoxicity of nanoparticles. In this review paper, we summarized the antimicrobial activities and mechanisms of various kinds of engineered nanoparticles to imprale understanding about these characteristics of nanoparticles.

환경 나노 기술의 빠른 발전과 함께 다양한 종류의 나노 입자에 의한 미생물 불활성화 성능이 주목 받아 왔으며, 이러한 특성을 적용한 제품들이 연구개발되어 왔다. 하지만 최근 나노 입자가 갖는 탁월한 생물학적 특성이 환경에 유익한 미생물뿐만 아니라 인간에게까지 유해한 영향을 줄 수 있다는 독성 연구 결과가 발표됨에 따라, 관련 연구자 및 일반 시민들에게 우려와 논쟁을 가져오고 있다. 본 총설에서는 이러한 나노 물질의 양면성에 대한 정확한 이해를 돕고자 기존의 연구를 중심으로 다양한 나노 입자에 의한 미생물 불활성화 특성과 메카니즘 및 응용 분야에 대해서 검토, 정리하였다.

Keywords

References

  1. Y. Kim and J. Yi, News & Information for Chemical Engineers, 23, 338 (2005).
  2. K. Park, J. Environ. Toxicol., 20, 259 (2005).
  3. B. Choi, K. Kim, D. So, and I. Yu, KIC News, 10, 48 (2007).
  4. Q. Li, S. Mahendra, D. Y. Lyon, L. Brunet, M. V. Liga, D. Li, and P. J. J. Alvarez, Water Res., 42, 4591 (2008). https://doi.org/10.1016/j.watres.2008.08.015
  5. J. Y. Kim, T. Kim, and J. Yoon, J. Korean Ind. Eng. Chem., 20, 251 (2009).
  6. L. Balogh, D. R. Swanson, D. A. Tomalia, G. L. Hagnauer, and A. T. McManus, Nano Letters, 1, 18 (2001). https://doi.org/10.1021/nl005502p
  7. S. Y. Yeo, H. J. Lee, and S. H. Jeong, J. Mater. Sci., 38, 2143 (2003). https://doi.org/10.1023/A:1023767828656
  8. A. Kumar, P. K. Vemula, P. M. Ajayan, and G. John, Nature Materials, 7, 236 (2008). https://doi.org/10.1038/nmat2099
  9. K. Y. Choi, S. Kim, J. Y. Kim, J. Yoon, and J. Lee, J. Nanosci. Nanotech., 8, 5360 (2008). https://doi.org/10.1166/jnn.2008.1335
  10. S. B. Sant, K. S. Gill, and R. E. Burrell, Acta Biomaterialia, 3, 341 (2007). https://doi.org/10.1016/j.actbio.2006.10.008
  11. P. Li, J. Li, C. Wu, Q. Wu, and J. Li, Nanotech., 16, 1912 (2005). https://doi.org/10.1088/0957-4484/16/9/082
  12. R. Pedahzur, H. I. Shuval, and S. Ulitzur, Water Sci. Technol., 35, 87 (1997).
  13. M. A. Butkus, M. P. Labare, J. A. Starke, K. Moon, and M. Talbot, Appl. Environ. Microbiol., 70, 2848 (2004). https://doi.org/10.1128/AEM.70.5.2848-2853.2004
  14. J. Y. Kim, C. Lee, M. Cho, and J. Yoon, Water Res., 42, 356 (2008). https://doi.org/10.1016/j.watres.2007.07.024
  15. M. T. Yahya, T. M. Straub, and C. P. Gerba, Can. J. Microbiol., 38, 430 (1992). https://doi.org/10.1139/m92-072
  16. I. Sondi and B. S. Sondi, J. Coll. Interface Sci., 275, 177 (2004). https://doi.org/10.1016/j.jcis.2004.02.012
  17. S. K. Gogoi, P. Gopinath, A. Paul, A. Ramesh, S. S. Ghosh, and A. Chattopadhyay, Langmuir, 22, 9322 (2006). https://doi.org/10.1021/la060661v
  18. S. Pal, Y. K. Tak, and J. M. Song, Appl. Environ. Microbiol., 73, 1712 (2007). https://doi.org/10.1128/AEM.02218-06
  19. J. R. Morones, J. L. Elechiguerra, A. Camacho, K. Holt, J. B. Kouri, J. T. Ramírez, and M. J. Yacaman, Nanotech., 16, 2345 (2005).
  20. O. Choi and Z. Hu, Environ. Sci. Tech., 42, 4583 (2008). https://doi.org/10.1021/es703238h
  21. K. Cho, J. Park, T. Osaka, and S. Park, Electrochim. Acta, 51, 956 (2005). https://doi.org/10.1016/j.electacta.2005.04.071
  22. J. Y. Kim, S. Kim, J. Kim, J. Lee, and J. Yoon, J. of KSEE, 27, 771 (2005).
  23. C. Lok, C. Ho, R. Chen, Q. He, W. Yu, H. Sun, P. K. Tam, J. Chiu, and C. Che, J. Proteome Res., 5, 916 (2006). https://doi.org/10.1021/pr0504079
  24. R. Kumar and H. Munstedt, Biomaterials, 26, 2081 (2005). https://doi.org/10.1016/j.biomaterials.2004.05.030
  25. C. Radheshkumar and H. Munstedt, React. Func. Poly., 60, 780 (2006).
  26. R. L. Davis and S. F. Etris, Catalysis Today, 36, 107 (1997). https://doi.org/10.1016/S0920-5861(96)00203-9
  27. H. Park, J. Y. Kim, J. Kim, J. Lee, J. Hahn, M. B. Gu, and J. Yoon, Water Res., 43, 1027 (2009). https://doi.org/10.1016/j.watres.2008.12.002
  28. S. Y. Liau, D. C. Read, W. J. Pugh, J. R. Furr, and A. D. Russell, Lett. Appl. Microbiol., 25, 279 (1997). https://doi.org/10.1046/j.1472-765X.1997.00219.x
  29. H. Arakawa, J. F. Neault, and H. A. Tajmir-Riahi, Biophys. J., 81, 1580 (2001). https://doi.org/10.1016/S0006-3495(01)75812-2
  30. M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemann, Chem. Rev., 95, 69 (1995). https://doi.org/10.1021/cr00033a004
  31. J. Lee, W. Choi, and J. Yoon, Environ. Sci. Technol., 39, 6800 (2005). https://doi.org/10.1021/es0481777
  32. T. Saltammer and F. Fuhrmann, Environ. Sci. Technol., 36, 2403 (2007).
  33. S. Kwak, S. H. Kim, and S. S. Kim, Environ. Sci. Technol., 35, 2388 (2001). https://doi.org/10.1021/es0017099
  34. A. Vohra, D. Y. Goswami, D. A. Deshpande, and S. S. Block, J. Ind. Microbiol. Biotechnol., 32, 364 (2005). https://doi.org/10.1007/s10295-005-0006-y
  35. V. Vamathevan, R. Amal, D. Beydoun, G. Low, and S. McEvoy, J. Photochem. Photobiol. A., 148, 235 (2002).
  36. J. Y. Kim, C. Park, and J. Yoon, Environ. Eng. Res., 13, 136 (2008). https://doi.org/10.4491/eer.2008.13.3.136
  37. H. Jang, S. Kim, and S. Kim, J. Nanopart. Res., 3, 141 (2001). https://doi.org/10.1023/A:1017948330363
  38. L. K. Adams, D. Y. Lyon, and P. J. J. Alvarez, Water Res., 40, 3527 (2006). https://doi.org/10.1016/j.watres.2006.08.004
  39. M. Cho, H. Chung, W. Choi, and J. Yoon, Water Res., 38, 1069 (2004). https://doi.org/10.1016/j.watres.2003.10.029
  40. M. Cho, H. Chung, W. Choi, and J. Yoon, Appl. Environ. Microbiol., 71, 270 (2005). https://doi.org/10.1128/AEM.71.1.270-275.2005
  41. R. J. Watts, S. Kong, M. P. Orr, G. C. Miller, and B. E. Henry, Water Res., 29, 95 (1995). https://doi.org/10.1016/0043-1354(94)E0122-M
  42. J. Farrell, M. Kason, N. Melitas, and T. Li, Environ. Sci. Technol., 34, 514 (2000). https://doi.org/10.1021/es990716y
  43. W. A. Arnold and A. L. Roberts, Environ. Sci. Technol., 34, 1794 (2000). https://doi.org/10.1021/es990884q
  44. C. R. Keenan and D. L. Sedlak, Environ. Sci. Technol., 42, 1262 (2008). https://doi.org/10.1021/es7025664
  45. I. A. Katsoyiannis, T. Ruettimann, and S. J. Hug, Environ. Sci. Technol., 42, 7424 (2008). https://doi.org/10.1021/es800649p
  46. C. Lee, J. Y. Kim, W. I. Lee, K. L. Nelson, J. Yoon, and D. L. Sedlak, Environ. Sci. Technol., 42, 4927 (2008). https://doi.org/10.1021/es800408u
  47. M. Auffan, W. Achouak, J. Rose, M. Roncato, C. Chaneac, D. T. Waite, A. Masion, J. C. Woicik, M. R. Wiesner, and J. Bottero, Environ. Sci. Technol., 42, 6730 (2008). https://doi.org/10.1021/es800086f
  48. M. Auffan, J. Rose, M. R. Wiesner, and J. Bottero, Environ. Pollut., 157, 1127 (2009). https://doi.org/10.1016/j.envpol.2008.10.002
  49. P. Gong, H. Li, X. He, K. Wang, J. Hu, W. Tan, S. Zhang, and X. Yang, Nanotech., 18, 285604 (2007). https://doi.org/10.1088/0957-4484/18/28/285604
  50. H. W. Kroto, J. R. Heath, S. C. Obrien, R. F. Curl, and R. E. Samlley, Nature, 318, 162 (1985). https://doi.org/10.1038/318162a0
  51. M. B. Spesia, M. E. Milanesio, and E. N. Durantini, Eur. J. Med. Chem., 43, 853 (2008). https://doi.org/10.1016/j.ejmech.2007.06.014
  52. J. Lee, J. D. Fortner, J. B. Hughes, and J. Kim, Environ. Sci. Technol., 42, 2529 (2007).
  53. J. Lee, Y. Yamokoshi, J. B. Hughes, and J. Kim, Environ. Sci. Technol., 42, 3459 (2008). https://doi.org/10.1021/es702905g
  54. D. Y. Lyon, L. Brunet, G. W. Hinkal, M. R. Wiesner, and P. J. J. Alvarez, Nano Lett., 8, 1539 (2008). https://doi.org/10.1021/nl0726398
  55. D. Y. Lyon and P. J. J. Alvarez, Environ. Sci. Technol., 42, 8127 (2008). https://doi.org/10.1021/es801869m
  56. B. Zhang, M. Cho, J. D. Fortner, J. Lee, C. Huang, J. B. Hughes, and J. Kim, Environ. Sci. Technol., 43, 108 (2009). https://doi.org/10.1021/es8019066
  57. S. Kang, M. Pinault, L. D. Pfefferle, and M. Elimelech, Langmuir, 23, 8670 (2007). https://doi.org/10.1021/la701067r
  58. S. Kang, M. Herzberg, D. F. Rodrigues, and M. Elimelech, Langmuir, 24, 6409 (2008). https://doi.org/10.1021/la800951v
  59. A. Thill, O. Zeyons, O. Spalla, F. Chauvat, J. Rose, M. Auffan, and A. M. Flank, Environ. Sci. Technol., 40, 6151 (2006). https://doi.org/10.1021/es060999b