제올라이트막과 제올라이트/고분자 복합막의 전망과 도전

Zeolite and Zeolite/Polymer Composite Membranes: Promises and Challenges

  • 정해권 (Texas A&M 대학교 화학공학과)
  • Jeong, Hae-Kwon (Artie McFerrin Department of Chemical Engineering and Materials Science and Engineering Program, Texas A&M University)
  • 투고 : 2010.08.27
  • 발행 : 2010.10.10

초록

최근 에너지 효율이 높은 공정기술의 수요가 증가하면서 분리막을 이용한 기체분리가 많은 연구자들의 관심을 모으고 있다. 현재 분리막에 의한 기체 분리 시장은 고분자막이 독점하고 있으며 탄화수소와 같은 응축기체 분리시장이 휠씬 큼에도 불구하고 주로 비응축 기체분리에 제한되고 있다. 이는 고분자 재료의 물성에 한계가 있기 때문이다. 제올라이트막이나 제올라이트/고분자 복합막이 제올라이트의 우수한 분리력과 화학적/열적 특성으로 인해 고분자막의 한계를 극복할 수 있는 대안이 될 수 있다. 이번 총설에서는 이러한 기체분리를 위한 제올라이트막과 제올라이트/고분자 복합막에 대해 간략히 소개하고자 한다.

Recently membrane-based gas separation has attracted a great deal of research interests due to the growing demands on greener technologies. Current membrane-based gas separation is dominant by polymer membranes and limited mostly to non-condensable gases even though condensable gases such hydrocarbon isomers are much more attractive. This is primarily due to the limitations of polymer materials. Zeolites and their composites with polymer can offer alternative to current polymeric membranes owing to their superior separation and chemical/thermal properties. This review is intended to provide a brief overview on zeolite and zeolite/polymer composite membranes for gas separation applications.

키워드

참고문헌

  1. R. W. Baker, Ind. Eng. Chem. Res., 41, 1393 (2002). https://doi.org/10.1021/ie0108088
  2. W. J. Koros, Materials Science : Necessary but Not Sufficient for Truly Advanced Membranes North American Membrane Society Annual Meeting, Chicago, IL (2006).
  3. L. M. Robeson, J. Membr. Sci., 62, 165 (1991). https://doi.org/10.1016/0376-7388(91)80060-J
  4. J. C. Poshusta, V. A. Tuan, E. A. Pape, R. D. Noble, and J. L. Falconer, AIchE Journal, 46, 779 (2000). https://doi.org/10.1002/aic.690460412
  5. J. Coronas and J. Santamaria, Separation and Purification Methods, 28, 127 (1999). https://doi.org/10.1080/03602549909351646
  6. E. E. McLeary, J. C. Jansen, and F. Kapteijn, Microporous and Mesoporous Materials, 90, 198 (2006). https://doi.org/10.1016/j.micromeso.2005.10.050
  7. F. Mizukami, Porous Materials in Environmentally Friendly Processes, 125, 1 (1999). https://doi.org/10.1016/S0167-2991(99)80190-6
  8. W. J. Koros and R. Mahajan, Journal of Membrane Science, 175, 181 (2000). https://doi.org/10.1016/S0376-7388(00)00418-X
  9. R. Mahajan, D. Q. Vu, and W. J. Koros, J. Chin. Inst. Chem. Eng., 33, 77 (2002).
  10. W. M. Meier, D. H. Olson, and C. Baerlocher, Atlas of Zeolite Structure Types, Elsevier, Amsterdam (1996).
  11. R. Szostak, Molecular Sieves: Principles of Synthesis and Identification (1998).
  12. J. Choi, S. Ghosh, L. King, and M. Tsapatsis, Adsorption-Journal of the International Adsorption Society, 12, 339 (2006). https://doi.org/10.1007/s10450-006-0564-y
  13. Z. Lai, G. Bonilla, I. Diaz, J. G. Nery, K. Sujaoti, M. A. Amat, E. Kokkoli, O. Terasaki, R. W. Thompson, M. Tsapatsis, and D. G. Vlachos, Science, 300, 456 (2003).
  14. Z. P. Lai, M. Tsapatsis, and J. R. Nicolich, Advanced Functional Materials, 14, 716 (2004). https://doi.org/10.1002/adfm.200400040
  15. T. Matsufuji, N. Nishiyama, M. Matsukata, and K. Uyama, Journal of Membrane Science, 178, 25 (2000). https://doi.org/10.1016/S0376-7388(00)00462-2
  16. H. Sakai, T. Tomita, and T. Takahashi, Separation and Purification Technology, 25 297 (2001). https://doi.org/10.1016/S1383-5866(01)00056-9
  17. G. Xomeritakis, Z. P. Lai, and M. Tsapatsis, Ind. Eng. Chem. Res., 40, 544 (2001). https://doi.org/10.1021/ie000613k
  18. Y. Hasegawa, K. Watanabe, K. Kusakabe, and S. Morooka, Separation and Purification Technology, 22-23, 319 (2001). https://doi.org/10.1016/S1383-5866(00)00154-4
  19. J. C. Poshusta, R. D. Noble, and J. L. Falconer, J. Membr. Sci., 186, 25 (2001). https://doi.org/10.1016/S0376-7388(00)00666-9
  20. I. G. Giannakopoulos and V. Nikolakis, Industrial & Engineering Chemistry Research, 44, 226 (2005). https://doi.org/10.1021/ie049508r
  21. G. R. Gavalas, in Y. Yampolskii, I. Pinnau, and B. D. Freeman (Editors), Materials Science of Membranes for Gas and Vapor Separation, John Wiley & Sons, Ltd., New York, p. 307 (2006).
  22. H. Suzuki, Abstr. Pap. Am. Chem. Soc., 195, 73 (1988).
  23. S. Nair and M. Tsapatsis, in S. M. Auerbach, K. Carrado, and P. K. Dutta (Editors), Handbook of Zeolite Catalysts and Microporous Materials, Marcel Dekker Inc., New York (2003).
  24. J. Choi, H. K. Jeong, M. A. Snyder, J. A. Stoeger, R. I. Masel, and M. Tsapatsis, Science, 325, 590 (2009). https://doi.org/10.1126/science.1176095
  25. D. F. Li, T.-S. Chung, R. Wang, and Y. Liu, J. Membr. Sci., 198, 211 (2002). https://doi.org/10.1016/S0376-7388(01)00658-5
  26. T. T. Moore and W. J. Koros, Journal of Molecular Structure, 739, 87 (2005). https://doi.org/10.1016/j.molstruc.2004.05.043
  27. R. Mahajan, R. Burns, M. Schaeffer, and W. J. Koros, J. Appl. Polym. Sci., 86, 881 (2002). https://doi.org/10.1002/app.10998
  28. R. Mahajan and W. J. Koros, Ind. Eng. Chem. Res., 39, 2692 (2000). https://doi.org/10.1021/ie990799r
  29. R. Mahajan and W. J. Koros, Polym. Eng. Sci., 42, 1420 (2002). https://doi.org/10.1002/pen.11041
  30. R. Mahajan and W. J. Koros, Polym. Eng. Sci., 42, 1432 (2002). https://doi.org/10.1002/pen.11042
  31. S. Shu, S. Husain, and W. J. Koros, Journal of Physical Chemistry C, 111, 652 (2007). https://doi.org/10.1021/jp065711j
  32. H. M. Yuan, J. S. Chen, Z. Shi, W. Chen, Y. Wang, P. Zhang, J. H. Yu, and R. R. Xu, J. Chem. Soc.-Dalton Trans, 1981 (2000).
  33. J. Yu, J. Li, K. Sugiyama, N. Togashi, O. Terasaki, K. Hiraga, B. Zhou, S. Qiu, and R. Xu, Chem. Mat., 11, 1727 (1999). https://doi.org/10.1021/cm981095v
  34. W. F. Yan, J. H. Yu, Y. Li, Z. Shi, and R. R. Xu, J. Solid State Chem., 167, 282 (2002). https://doi.org/10.1016/S0022-4596(02)99511-3
  35. M. E. Leonowicz, J. A. Lawton, S. L. Lawton, and M. K. Rubin, Science, 264, 1910 (1994). https://doi.org/10.1126/science.264.5167.1910
  36. H. K. Jeong, S. Nair, T. Vogt, L. C. Dickinson, and M. Tsapatsis, Nature Materials, 2, 53 (2003). https://doi.org/10.1038/nmat795
  37. H. K. Jeong, W. Krych, H. Ramanan, S. Nair, E. Marand, and M. Tsapatsis, Chemistry of Materials, 16, 3838 (2004). https://doi.org/10.1021/cm049154u