Theoretical Study of Solvent Effect on Yield of Oxidative Addition Reaction

산화첨가반응의 수득률에 미치는 용매효과에 관한 이론적 연구

  • Lee, Chul-Jae (Division of Chemical Industry, Yeungnam College of Science & Technology) ;
  • Kim, Byung-So (Division of Chemical Industry, Yeungnam College of Science & Technology)
  • 이철재 (영남이공대학 화장품.화공계열) ;
  • 김병소 (영남이공대학 화장품.화공계열)
  • Received : 2010.05.26
  • Accepted : 2010.06.24
  • Published : 2010.10.10

Abstract

In present work, oxidative addition reaction of 1,3-cycleohexandion (1,3-CHD) with ethyl vinyl ether (EVE) was attempted utilizing $Ag_2CO_3$/celite (SC) reagent. In order to optimize reaction conditions, we surveyed several solvents for the production of dihydrofuran with the (SC) system. The yield of the acetonitrile (AN), dimethyl sulfoxide (DMSO), benzene (BZ), and heptane (HT) are given 78, 40, 15, and 10%, respectively. Therefore, we studied the solvent effects on yields by using PM3 and ZINDO/1 parameter of semi-empirical method of HyperChem7.0 molecular modeling program.

본 연구에서는 1,3-dicarbonyl 화합물과 올레핀 화합물의 산화첨가반응에서 $Ag_2CO_3$/celite (SC)를 촉매로 하여 1,3-cycleohexandion (1,3-CHD)과 ethyl vinyl ether (EVE)를 acetonitrile (AN), dimethyl sulfoxide (DMSO), benzene (BZ), heptane (HT)을 각각 용매로 하여 반응을 진행시켜 보았다. 그 결과 수득률이 78, 40, 15, 10%로 나타났다. 따라서 이러한 용매의 효과에 따른 수득률의 변화를 알아보기 위하여 하이퍼캠의 반경험적 방법으로 PM3와 ZINDO/1 파라미터를 이용하여 이론적 고찰을 해 보았다.

Keywords

References

  1. M. Julia, Acc. Chem. Res., 4, 386 (1971). https://doi.org/10.1021/ar50047a005
  2. C. Walling, Tetrahedron, 41, 3887 (1985). https://doi.org/10.1016/S0040-4020(01)97172-8
  3. M. S. Kharasch, F. S. Arimato, and W. Nudenberg, J. Org. Chem., 16, 1556 (1951). https://doi.org/10.1021/jo50004a010
  4. M. S. Kharasch, F. Kawahara, and W. Nudenberg, J. Org. Chem., 19, 1977 (1954). https://doi.org/10.1021/jo01377a015
  5. M. Hajek, P. Silhavy, and J. Malek, Tetrahedron Lett., 15, 3193 (1974). https://doi.org/10.1016/S0040-4039(01)91859-3
  6. Y. Ito, S. Fujii, T. Konoike, and T. Saegusa, Synth. Commun., 6, 429 (1976). https://doi.org/10.1080/00397917608065591
  7. H. Rapopot and H. Reist, J. Am. Chem. Soc., 77, 490 (1955). https://doi.org/10.1021/ja01607a086
  8. M. Feitizon and M. C. R. Golfier, Acad. Sci. Ser., 267, 4445 (1968).
  9. F. Mehl, I. Bombarda, N. Vanthuyne, R. Faure, and E. M. Gaydou, Food Chem., 121, 98 (2010). https://doi.org/10.1016/j.foodchem.2009.12.010
  10. O. Unsal-Tan, K. Ozden, A. Rauk, and A. Balkan, Europ. J. Med. Chem., 45, 2345 (2010). https://doi.org/10.1016/j.ejmech.2010.02.012
  11. J. L. M. Tributino, C. D. Duarte, R. S. Correa, A. C. Doriguetto, J. Ellena, N. C. Romeiro, N. G. Castro, A. L. P. Miranda, E. J. Barreiro, and C. A. M. Fraga, Bioorg. Med. Chem., 17, 1125 (2009). https://doi.org/10.1016/j.bmc.2008.12.045
  12. N. L. Allinger, J. Am. Chem. Soc., 99, 8122 (1977).
  13. R. Klein and H. Wallmeier, Angew. Chem. Int. Ed., (Eng), 26, 403 (1987). https://doi.org/10.1002/anie.198704031
  14. K. Tatsumi, R. Hoffmann, A. Yamamoto, and J. K. Stille, Bull. Chem. Soc. Jpn., 54, 1857 (1981). https://doi.org/10.1246/bcsj.54.1857
  15. R. Hoffmann, Science, 211, 995 (1981). https://doi.org/10.1126/science.211.4486.995
  16. M. D. Su and S. Y. Chu, J. Phys. Chem., 93, 6043 (1989). https://doi.org/10.1021/j100353a022
  17. B. C. Thompson, Y. G. Kim, and J. R. Reynolds, Macromolecules., 38, 5359 (2005). https://doi.org/10.1021/ma0505934
  18. Y. Li, H. Li, B. Xu, Z. Li, F. Chen, D. Feng, and J. Zhang, W. Tian Polymer, 51, 1786 (2010). https://doi.org/10.1016/j.polymer.2010.01.039
  19. M. D. Su and S. Y. Chu, J. Phys. Chem., 95, 9757 (1991). https://doi.org/10.1021/j100177a030
  20. M. Grof, A. Gatial, V. Milata, N. Pronayova, J. Kozisk, M. Breza, and P. Matejka, J. Mole. Struct., 938, 97 (2009). https://doi.org/10.1016/j.molstruc.2009.09.007