DOI QR코드

DOI QR Code

Quercetin-induced Growth Inhibition in Human Bladder Cancer Cells Is Associated with an Increase in $Ca^{2+}$-activated $K^+$ Channels

  • Kim, Yang-Mi (Department of Physiology, College of Medicine, Chungbuk National University) ;
  • Kim, Wun-Jae (Department of Urology, College of Medicine, Chungbuk National University) ;
  • Cha, Eun-Jong (Department of Biomedical Engineering, College of Medicine, Chungbuk National University)
  • 투고 : 2011.08.12
  • 심사 : 2011.10.09
  • 발행 : 2010.10.30

초록

Quercetin (3,3',4',5,7-pentahydroxyflavone) is an attractive therapeutic flavonoid for cancer treatment because of its beneficial properties including apoptotic, antioxidant, and antiproliferative effects on cancer cells. However, the exact mechanism of action of quercetin on ion channel modulation is poorly understood in bladder cancer 253J cells. In this study, we demonstrated that large conductance $Ca^{2+}$-activated $K^+$ ($BK_{Ca}$) or MaxiK channels were functionally expressed in 253J cells, and quercetin increased $BK_{Ca}$ current in a concentration dependent and reversible manner using a whole cell patch configuration. The half maximal activation concentration ($IC_{50}$) of quercetin was $45.5{\pm}7.2{\mu}m$. The quercetin-evoked $BK_{Ca}$ current was inhibited by tetraethylammonium (TEA; 5 mM) a non-specific $BK_{Ca}$ blocker and iberiotoxin (IBX; 100 nM) a $BK_{Ca}$-specific blocker. Quercetin-induced membrane hyperpolarization was measured by fluorescence-activated cell sorting (FACS) with voltage sensitive dye, bis (1,3-dibutylbarbituric acid) trimethine oxonol ($DiBAC_4$2(3); 100 nM). Quercetin-evoked hyperpolarization was prevented by TEA. Quercetin produced an antiproliferative effect ($30.3{\pm}13.5%$) which was recovered to $53.3{\pm}10.5%$ and $72.9{\pm}3.7%$ by TEA and IBX, respectively. Taken together our results indicate that activation of $BK_{Ca}$ channels may be considered an important target related to the action of quercetin on human bladder cancer cells.

키워드

참고문헌

  1. Hirpara KV, Aggarwal P, Mukherjee AJ, Joshi N, Burman AC. Quercetin and its derivatives: synthesis, pharmacological uses with special emphasis on anti-tumor properties and prodrug with enhanced bio-availability. Anticancer Agents Med Chem. 2009;9:138-161 https://doi.org/10.2174/187152009787313855
  2. Okamoto T. Safety of quercetin for clinical application (Review). Int J Mol Med. 2005;16:275-278.
  3. Ruiz MJ, Fernandez M, Pico Y, Manes J, Asensi M, Carda C, Asensio G, Estrela JM. Dietary administration of high doses of pterostilbene and quercetin to mice is not toxic. J Agric Food Chem. 2009;57:3180-3186. https://doi.org/10.1021/jf803579e
  4. Avila MA, Velasco JA, Cansado J, Notario V. Quercetin mediates the down-regulation of mutant p53 in the human breast cancer cell line MDA-MB468. Cancer Res. 1994;54:2424-2428.
  5. Kim HJ, Kim SK, Kim BS, Lee SH, Park YS, Park BK, Kim SJ, Kim J, Choi C, Kim JS, Cho SD, Jung JW, Roh KH, Kang KS, Jung JY. Apoptotic effect of quercetin on HT-29 colon cancer cells via the AMPK signaling pathway. J Agric Food Chem. 2010;58:8643-8650. https://doi.org/10.1021/jf101510z
  6. Wang HY, Guo LM, Chen Y, Zhao XH, Cheng CL, Wu MY, He LY. Quercetin inhibits growth and induces apoptosis of human gastric carcinoma cells. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 2006;22:585-587.
  7. Monasterio A, Urdaci MC, Pinchuk IV, Lopez-Moratalla N, Martinez-Irujo JJ. Flavonoids induce apoptosis in human leukemia U937 cells through caspase- and caspase-calpaindependent pathways. Nutr Cancer. 2004;50:90-100 https://doi.org/10.1207/s15327914nc5001_12
  8. Ma L, Feugang JM, Konarski P, Wang J, Lu J, Fu S, Ma B, Tian B, Zou C, Wang Z. Growth inhibitory effects of quercetin on bladder cancer cell. Front Biosci. 2006;11:2275-2285 https://doi.org/10.2741/1970
  9. Zhang M, Swarts SG, Yin L, Liu C, Tian Y, Cao Y, Swarts M, Yang S, Zhang SB, Zhang K, Ju S, Olek DJ Jr, Schwartz L, Keng PC, Howell R, Zhang L, Okunieff P. Antioxidant properties of quercetin. Adv Exp Med Biol. 2011;701:283-289.
  10. Moon SK, Cho GO, Jung SY, Gal SW, Kwon TK, Lee YC, Madamanchi NR, Kim CH. Quercetin exerts multiple inhibitory effects on vascular smooth muscle cells: role of ERK1/2, cellcycle regulation, and matrix metalloproteinase-9. Biochem Biophys Res Commun. 2003;301:1069-78. https://doi.org/10.1016/S0006-291X(03)00091-3
  11. Choi JA, Kim JY, Lee JY, Kang CM, Kwon HJ, Yoo YD, Kim TW, Lee YS, Lee SJ. Induction of cell cycle arrest and apoptosis in human breast cancer cells by quercetin. Int J Oncol. 2001;19:837-844.
  12. Beniston RG, Campo MS. Quercetin elevates p27$(^{Kip1})$ and arrests both primary and HPV16 E6/E7 transformed human keratinocytes in G1. Oncogene. 2003;22:5504-5514. https://doi.org/10.1038/sj.onc.1206848
  13. Mittra B, Saha A, Chowdhury AR, Pal C, Mandal S, Mukhopadhyay S, Bandyopadhyay S, Majumder HK. Luteolin, an abundant dietary component is a potent anti-leishmanial agent that acts by inducing topoisomerase II-mediated kinetoplast DNA cleavage leading to apoptosis. Mol Med. 2000;6:527-541. https://doi.org/10.1007/s0089400060527
  14. Vidya Priyadarsini R, Senthil Murugan R, Maitreyi S, Ramalingam K, Karunagaran D, Nagini S. The flavonoid quercetin induces cell cycle arrest and mitochondria-mediated apoptosis in human cervical cancer (HeLa) cells through p53 induction and $NF-\kappa B$ inhibition. Eur J Pharmacol. 2010;649:84-91. https://doi.org/10.1016/j.ejphar.2010.09.020
  15. Wang Z. Roles of $K^{+}$ channels in regulating tumour cell proliferation and apoptosis. Pflugers Arch. 2004;448:274-286. https://doi.org/10.1007/s00424-004-1258-5
  16. Saponara S, Sgaragli G, Fusi F. Quercetin as a novel activator of L-type $Ca(^{2+})$ channels in rat tail artery smooth muscle cells. Br J Pharmacol. 2002;135:1819-1827 https://doi.org/10.1038/sj.bjp.0704631
  17. Saponara S, Sgaragli G, Fusi F. Quercetin antagonism of Bay K 8644 effects on rat tail artery L-type $Ca^{2+}$ channels. Eur J Pharmacol. 2008;598:75-80. https://doi.org/10.1016/j.ejphar.2008.08.016
  18. Nishida S, Satoh H. Possible Involvement of Ca activated K channels, SK channel, in the quercetin-induced vasodilatation. Korean J Physiol Pharmacol. 2009;13:361-365 https://doi.org/10.4196/kjpp.2009.13.5.361
  19. Kuhlmann CR, Schaefer CA, Kosok C, Abdallah Y, Walther S, Ludders DW, Neumann T, Tillmanns H, Schafer C, Piper HM, Erdogan A. Quercetin-induced induction of the NO/cGMP pathway depends on $Ca^{2+}$-activated $K^{+}$ channel-induced hyperpolarization- mediated $Ca^{2+}$-entry into cultured human endothelial cells. Planta Med. 2005;71:520-524. https://doi.org/10.1055/s-2005-864152
  20. Yang L, Ma JH, Zhang PH, Zou AR, Tu DN. Quercetin activates human Kv1.5 channels by a residue I502 in the S6 segment. Clin Exp Pharmacol Physiol. 2009;36:154-161. https://doi.org/10.1111/j.1440-1681.2008.05061.x
  21. Pyle LC, Fulton JC, Sloane PA, Backer K, Mazur M, Prasain J, Barnes S, Clancy JP, Rowe SM. Activation of the cystic fibrosis transmembrane conductance regulator by the flavonoid quercetin: potential use as a biomarker of $\Delta F508$ cystic fibrosis transmembrane conductance regulator rescue. Am J Respir Cell Mol Biol. 2010;43:607-616. https://doi.org/10.1165/rcmb.2009-0281OC
  22. Lee BH, Hwang SH, Choi SH, Shin TJ, Kang J, Lee SM, Nah SY. Quercetin Inhibits $\alpha3\beta4$ Nicotinic acetylcholine receptormediated ion currents expressed in Xenopus oocytes. Korean J Physiol Pharmacol. 2011;15:17-22. https://doi.org/10.4196/kjpp.2011.15.1.17
  23. Ouadid-Ahidouch H, Roudbaraki M, Ahidouch A, Delcourt P, Prevarskaya N. Cell-cycle-dependent expression of the large $Ca(^{2+})$-activated $K(^{+})$ channels in breast cancer cells. Biochem Biophys Res Commun. 2004;316:244-251. https://doi.org/10.1016/j.bbrc.2004.02.041
  24. Han X, Xi L, Wang H, Huang X, Ma X, Han Z, Wu P, Ma X, Lu Y, Wang G, Zhou J, Ma D. The potassium ion channel opener NS1619 inhibits proliferation and induces apoptosis in A2780 ovarian cancer cells. Biochem Biophys Res Commun. 2008;375:205-209. https://doi.org/10.1016/j.bbrc.2008.07.161
  25. Cambien B, Rezzonico R, Vitale S, Rouzaire-Dubois B, Dubois JM, Barthel R, Karimdjee BS, Mograbi B, Schmid-Alliana A, Schmid-Antomarchi H. Silencing of hSlo potassium channels in human osteosarcoma cells promotes tumorigenesis. Int J Cancer. 2008;123:365-371. https://doi.org/10.1002/ijc.23511
  26. Abdullaev IF, Rudkouskaya A, Mongin AA, Kuo YH. Calciumactivated potassium channels BK and IK1 are functionally expressed in human gliomas but do not regulate cell proliferation. PLoS One. 2010;5:e12304 https://doi.org/10.1371/journal.pone.0012304
  27. Roger S, Potier M, Vandier C, Le Guennec JY, Besson P. Description and role in proliferation of iberiotoxin-sensitive currents in different human mammary epithelial normal and cancerous cells. Biochim Biophys Acta. 2004;1667:190-199. https://doi.org/10.1016/j.bbamem.2004.10.002
  28. Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981;391:85-100. https://doi.org/10.1007/BF00656997
  29. Yamada A, Gaja N, Ohya S, Muraki K, Narita H, Ohwada T, Imaizumi Y. Usefulness and limitation of $DiBAC_{4}(3)$, a voltage-sensitive fluorescent dye, for the measurement of membrane potentials regulated by recombinant large conductance $Ca(^{2+})$-activated $K(^{+})$ channels in HEK293 cells. Jpn J Pharmacol. 2001;86:342-350. https://doi.org/10.1254/jjp.86.342
  30. Lang F, Foller M, Lang K, Lang P, Ritter M, Vereninov A, Szabo I, Huber SM, Gulbins E. Cell volume regulatory ion channels in cell proliferation and cell death. Methods Enzymol. 2007;428:209-225.
  31. Huang MH, Wu SN, Chen CP, Shen AY. Inhibition of $Ca(^{2+})$- activated and voltage-dependent $K(^{+})$ currents by 2-mercaptophenyl- 1,4-naphthoquinone in pituitary GH3 cells: contribution to its antiproliferative effect. Life Sci. 2002;70:1185-1203. https://doi.org/10.1016/S0024-3205(01)01489-8
  32. Ransom CB, Sontheimer H. BK channels in human glioma cells. J Neurophysiol. 2001;85:790-803. https://doi.org/10.1152/jn.2001.85.2.790
  33. Basrai D, Kraft R, Bollensdorff C, Liebmann L, Benndorf K, Patt S. BK channel blockers inhibit potassium-induced proliferation of human astrocytoma cells. Neuroreport. 2002;13:403-407. https://doi.org/10.1097/00001756-200203250-00008
  34. Weaver AK, Bomben VC, Sontheimer H. Expression and function of calcium-activated potassium channels in human glioma cells. Glia. 2006;54:223-233. https://doi.org/10.1002/glia.20364
  35. Coiret G, Borowiec AS, Mariot P, Ouadid-Ahidouch H, Matifat F. The antiestrogen tamoxifen activates BK channels and stimulates proliferation of MCF-7 breast cancer cells. Mol Pharmacol. 2007;71:843-851.
  36. Bloch M, Ousingsawat J, Simon R, Schraml P, Gasser TC, Mihatsch MJ, Kunzelmann K, Bubendorf L. KCNMA1 gene amplification promotes tumor cell proliferation in human prostate cancer. Oncogene. 2007;26:2525-2534. https://doi.org/10.1038/sj.onc.1210036
  37. Kakehi Y, Hirao Y, Kim WJ, Ozono S, Masumori N, Miyanaga N, Nasu Y, Yokomizo A. Bladder Cancer Working Group report. Jpn J Clin Oncol. 2010;40 Suppl 1:i57-64. https://doi.org/10.1093/jjco/hyq128
  38. Shang PF, Kwong J, Wang ZP, Tian J, Jiang L, Yang K, Yue ZJ, Tian JQ. Intravesical Bacillus Calmette-Guerin versus epirubicin for Ta and T1 bladder cancer. Cochrane Database Syst Rev. 2011;(5):CD006885.
  39. Friberg S. BCG in the treatment of superficial cancer of the bladder: a review. Med Oncol Tumor Pharmacother. 1993;10:31-36.
  40. Lockyer CR, Gillatt DA. BCG immunotherapy for superficial bladder cancer. J R Soc Med. 2001;94:119-123. https://doi.org/10.1177/014107680109400305

피인용 문헌

  1. Flavonoids from Achyrocline satureioides: promising biomolecules for anticancer therapy vol.4, pp.7, 2014, https://doi.org/10.1039/c3ra43627f
  2. Site-Specific Anticancer Effects of Dietary Flavonoid Quercetin vol.66, pp.2, 2014, https://doi.org/10.1080/01635581.2014.864418
  3. TREK2-채널 과발현 세포주에서 에피갈로카테킨-3-갈레이트의 세포 증식 억제 효과 vol.17, pp.3, 2011, https://doi.org/10.5762/kais.2016.17.3.127
  4. Potassium channel inhibitors induce oxidative stress in breast cancer cells vol.11, pp.4, 2011, https://doi.org/10.1515/abm-2018-0004
  5. Kinase-targeted cancer therapies: progress, challenges and future directions vol.17, pp.1, 2011, https://doi.org/10.1186/s12943-018-0804-2
  6. Modulatory Effect of Selected Dietary Phytochemicals on Delayed Rectifier K+ Current in Human Prostate Cancer Cells vol.252, pp.2, 2011, https://doi.org/10.1007/s00232-019-00070-9
  7. The Green Anti-Cancer Weapon. The Role of Natural Compounds in Bladder Cancer Treatment vol.22, pp.15, 2021, https://doi.org/10.3390/ijms22157787