DOI QR코드

DOI QR Code

Pyrolysis Characteristics of Hemp By-products (Stem, Root and Bast)

헴프 부산물의 열분해 특성 연구

  • Choi, Gyeong-Ho (Department of Chemical Engineering, Kangwon National University) ;
  • Kim, Seung-Soo (Department of Chemical Engineering, Kangwon National University) ;
  • Kim, Jinsoo (Department of Chemical Engineering, Kyung Hee University) ;
  • Joo, Dong-Sik (Department of Food Service Industry, Hanzhong University) ;
  • Lee, Janggook (Department of Mechanical Automative Engineering, Hanzhong University)
  • 최경호 (강원대학교 삼척캠퍼스 화학공학과) ;
  • 김승수 (강원대학교 삼척캠퍼스 화학공학과) ;
  • 김진수 (경희대학교 화학공학과) ;
  • 주동식 (한중대학교 외식산업학과) ;
  • 이장국 (한중대학교 기계자동차공학과)
  • Received : 2011.07.26
  • Accepted : 2011.08.16
  • Published : 2011.10.10

Abstract

Hemp is known as one of the most productive and useful plants, which grows quickly in a moderate climate with only moderate water and fertilizer. Traditionally in Korea, hemp bast is used to natural fibres, and remaining such as stem and root is treated as waste. Those of hemp by-products can be transformed to bio fuel such as bio-oil and activated carbon. To understand pyrolysis characteristics, thermogravimetric analysis were carried out in TGA, in which hemp by-products were mostly decomposed at the temperature range of $270{\sim}370^{\circ}C$. The corresponding kinetic parameters including activation energy and pre-exponential factor were determined by differential method over the degree of conversions. The values of activation energies for pyrolysis were increased as the conversion increased from 10 to 90%.

헴프(Hemp)는 빠른 성장과 재배가 용이한 특성을 가지고 있으며 전통적으로 인피(Bast)는 섬유산업에 이용되고 있다. 그러나 인피를 제외한 줄기(Stem)와 뿌리(Root)는 활용분야가 없어 대부분 부산물로서 폐기되고 있다. 이러한 헴프 부산물은 바이오-오일과 같은 바이오연료나 활성탄의 원료물질로 활용될 수 있다. 본 연구에서는 헴프 줄기, 뿌리 및 인피를 대상으로 열화학적 특성을 파악하였다. TGA를 이용해 열중량분석을 수행한 결과 헴프 부산물들의 분해영역은 대부분 $270{\sim}370^{\circ}C$ 라는 것을 확인하였다. TGA 분석으로부터 얻은 실험데이터는 미분법을 적용하여 전화율 변화에 따라 활성화에너지와 전지수인자를 계산하였다. 열분해반응에서 활성화에너지는 전화율 증가에 따라 증가하였다.

Keywords

References

  1. http://en.wikipedia.org/wiki/Hemp
  2. S. Oqujai and R. A. Shanks, Polym. Degrad. Stabil., 89, 327 (2005). https://doi.org/10.1016/j.polymdegradstab.2005.01.016
  3. F. Collet, M. Bart, L. Serres, and J. Miriel, Constr. Build. Mater., 22, 1271 (2008). https://doi.org/10.1016/j.conbuildmat.2007.01.018
  4. S. B. Stankovic, D. Popovic, and G. B. Poparic, Polym. Test., 27, 41 (2008). https://doi.org/10.1016/j.polymertesting.2007.08.003
  5. X.-X. Feng, J.-Y. Chen, and H.-P. Zhang, J. Appl. Polym. Sci., 108, 4058 (2008). https://doi.org/10.1002/app.28008
  6. C. Vasiliu-Oprea, Polym.-Plast. Technol. Eng., 32, 181 (1993). https://doi.org/10.1080/03602559308019227
  7. B. K. Taseli, Afr. J. Biotechnol., 7, 286 (2008).
  8. J. M. Rosas, J. Bedia, J. Rodriguez-Mirasol, and T. Cordero, Fuel, 88, 19 (2009). https://doi.org/10.1016/j.fuel.2008.08.004
  9. F. Correia, D. N. Roy, and K. Goel, J. Wood Chem. Technol., 21, 97 (2001). https://doi.org/10.1081/WCT-100104221
  10. B. de Groot, J. C. van der Kolk, P. van der Meer, J. E. G. van Dam, and K. van't Riet, J. Wood Chem. Technol., 17, 187 (1997). https://doi.org/10.1080/02773819708003127
  11. A. Richini, M. Le Troedec, C. Peyrotout, and A. Smith, J. Appl. Polym. Sci., 112, 226 (2009). https://doi.org/10.1002/app.29412
  12. C. Paduranru and L. Tofan, Environ. Eng. Manage. J., 7, 687 (2008).
  13. P. T. Williams and A. R. Reed, J. Anal. Appl. Pyrol., 71, 971 (2004). https://doi.org/10.1016/j.jaap.2003.12.007
  14. A. R. Reed and P. T. Williams, Int. J. Energy Res., 28, 131 (2004). https://doi.org/10.1002/er.956
  15. J. Z. Xu, M. Gao, H. Z. Guo, X. L. Liu, Z. Li, H. Wang, and C. M. Tian, J. Fire Sci., 20, 227 (2002). https://doi.org/10.1177/0734904102020003905
  16. Annual Book of ASTM Standard (1997).
  17. Y.-H. Park, J. Kim, S.-S. Kim, and Y.-K. Park, Bioresource Technol., 100, 400 (2009). https://doi.org/10.1016/j.biortech.2008.06.040
  18. S.-S. Kim and F. A. Agblevor, Waste Manage., 27, 135 (2007). https://doi.org/10.1016/j.wasman.2006.01.012
  19. A. Demirbas, Fuel, 76, 431 (1997). https://doi.org/10.1016/S0016-2361(97)85520-2
  20. H. Yang, R. Yan, H. Chen, D. H. Lee, and C. Zheng, Fuel, 86, 1781 (2007). https://doi.org/10.1016/j.fuel.2006.12.013
  21. P. Gu, R. K. Hessley, and W.-P. Pan, J. Anal. Appl. Pyrol., 24, 147 (1992). https://doi.org/10.1016/0165-2370(92)85026-H
  22. S. Ouajai and R. A. Shanks, Polym. Degrad. Stabil., 89, 327 (2005). https://doi.org/10.1016/j.polymdegradstab.2005.01.016
  23. F. Yao, Q. Wu, Y. Lei, W. Guo, and Y. Xu, Polym. Degrad. Stabil., 93, 90 (2008). https://doi.org/10.1016/j.polymdegradstab.2007.10.012