DOI QR코드

DOI QR Code

Pyrolysis and Combustion Characteristics of an Pinus densiflora and Thinning-out Tree

적송 생목과 간벌목의 열분해 및 연소 특성 연구

  • Choi, Gyeong-Ho (Department of Chemical Engineering, Kangwon National University) ;
  • Kim, Seung-Soo (Department of Chemical Engineering, Kangwon National University)
  • 최경호 (강원대학교 삼척캠퍼스 화학공학과) ;
  • 김승수 (강원대학교 삼척캠퍼스 화학공학과)
  • Received : 2011.08.09
  • Accepted : 2011.09.20
  • Published : 2011.12.10

Abstract

Since the mid-1990s, the number of fires continue to increase and the size has been also larger. However, the pyrolysis and combustion characteristics of the various species of the medium such as fallen leaves, herbaceous plants, conifers and broadleaf trees have scarcely been studied. In this paper, we investigate the pyrolysis and combustion of the typical domestic needle-leaf tree of Pinus densiflora and thinning-out tree by thermogravimetric analysis (TGA). Pinus densiflora was ignited at $200^{\circ}C$ and pyrolysis from $230^{\circ}C$. In case of thinning-out tree was ignited and pyrolysis at $180^{\circ}C$ and $205^{\circ}C$, respectively. The values of activation energy for pyrolysis were increased as the conversion efficiency increasing from 10% to 80%, whereas the values was decreased during combustion.

1990년대 중반부터 지속적으로 산불건수가 증가하고 있으며, 그 규모 또한 대형화 되고 있다. 하지만 이러한 산불의 대형화 추세에도 낙엽, 초본류, 침엽수 및 활엽수에 따른 국 내외에는 수종별 열분해 및 연소 특성에 관한 연구가 미미한 실정이다. 본 논문에서는 국내 산림의 대표적인 침엽수인 적송의 생목과 간벌목을 대상으로 TGA를 이용 열분해 및 연소 특성에 대한 연구를 수행하였다. 적송 생목의 경우 $200^{\circ}C$ 부근에서 발화되고 열분해는 $230^{\circ}C$에서부터 시작되었다. 적송 간벌목의 경우는 발화온도와 열분해 온도가 각각 180와 $205^{\circ}C$부근에서 시작되었다. TGA 분석으로 얻은 실험데이터로부터 열분해반응에서 활성화에너지는 전화율 증가에 따라 증가하였다. 그러나 연소반응에서의 활성화에너지는 감소하는 경향을 나타냈다.

Keywords

References

  1. http://sanfire.forest.go.kr/foahome.
  2. http://fire.forest.go.kr
  3. M. W. Lee, Analysis of occurance and characteristics of forest fires of Yeongdong and Yeongseo regions in Gangwon-do, Reasearch Institute for Gangwon, Project No. 09-05 (2009).
  4. Y.-H. Seo, J.-M. Park, M. W. Lee, J. Kim, and S.-S. Kim, Appl. Chem. Eng., 21, 575 (2010).
  5. J.-M. Park and S.-S. Kim, Appl. Chem. Eng., 21, 644 (2010).
  6. Y. J. Chung, J. Ind. Eng. Chem., 16, 15 (2010). https://doi.org/10.1016/j.jiec.2010.01.031
  7. S.-Y. Lee and H.-P. Lee, J. Korean Institute Fire Sci. Eng., 20, 54 (2006).
  8. H.-P. Lee, S.-Y. Lee, and Y.-J. Park, J. Korean Institute Fire Sci. & Eng., 23, 21 (2009).
  9. C. H. Yeom, A Study on the Effect of Forest thinning or non-thinnng on Damage of Forest Fire, Master's degree Thesis, Kangwon National University (2009).
  10. Annual Book of ASTM Standard (1997).
  11. Y.-H. Park, J. Kim, S.-S. Kim, and Y.-K. Park, Bioresource Technol., 100, 400 (2009). https://doi.org/10.1016/j.biortech.2008.06.040
  12. S.-S. Kim and F. A. Agblevor, Waste Manage., 27, 135 (2007). https://doi.org/10.1016/j.wasman.2006.01.012
  13. http://en.wikipedia.org/wiki/Photosynthesis
  14. A. Demirbas, Fuel, 76, 431 (1997). https://doi.org/10.1016/S0016-2361(97)85520-2
  15. M. Muller-Hagedorn, H. Bockhorn, L. Krebs, and U. Muller, J. Anal. Appl. Pyrol., 69, 231 (2003).
  16. T. B. Reed and S. Gaur, Biomass Bioenerg., 7, 143 (1994). https://doi.org/10.1016/0961-9534(94)00053-V
  17. T. Fisher, M. Hajaligol, B. Waymack, and D. Kellogg, Ind. Eng. Chem. Res., 36, 1444 (2003).
  18. H. Y. Park and Y. J. Kim, J. Energy Eng., 18, 9 (2009).
  19. S.-S. Kim and Y.-J. Chung, J. Ind. Eng. Chem., 14, 793 (2003).