DOI QR코드

DOI QR Code

Structures and Properties of Semi-blown Petroleum Asphalt

세미-브로잉 공정에서 석유 아스팔트의 구조, 물성 변화

  • 민경의 (한국석유공업(주) 기술연구소) ;
  • 정한모 (울산대학교 자연과학대학 화학과)
  • Received : 2011.08.22
  • Accepted : 2011.11.07
  • Published : 2011.12.10

Abstract

The vacuum residue of petroleum refinery, i.e. asphalt, was modified through a non-catalytic air blowing process to prepare the semi-blown asphalt. Changes in composition, chemical structure, and physical properties of asphalt were examined. The result from the thin layer chromatography showed that the asphaltene content in asphalt was increased by the air blowing on account of the aromatization of aliphatic hydrocarbon and condensation. These changes in molecular structure were also confirmed by $^1H-NMR$, differential scanning calorimetry, and thermogravimetry. Because of the molecular structure changes, the penetration of asphalt was decreased and the softening point and the flash point of asphalt were increased.

무촉매 공기 브로잉 공정에서 석유계 감압 잔사유로부터 세미-부로운 아스팔트를 제조하는 경우, 시간에 따른 아스팔트의 조성, 구조, 물리적 성질의 변화를 조사하였다. 공기 브로잉에 의해 지방족 탄화수소 성분이 방향족 탄화수소 성분으로 전이되고, 고분자화 되어 아스팔텐 성분이 증가함을 박막크로마토그래피를 이용한 조성 분석에서 관찰하였다. 처리시간에 따른 방향족화와 고분자화 정도의 증가는 $^1H-NMR$, 열시차분석, 그리고 열중량분석에서도 확인할 수 있었다. 이러한 아스팔트의 조성과 구조의 변화는 침입도의 감소, 연화점과 인화점의 증가를 초래하였다.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. H. Abraham, Asphalts and Allied Substances, Vol. 1. Historical Review and Natural Raw Materials, 5th Eds. New York, D. Van Nostrand Co., Inc. (1960).
  2. T. F. Yen and G. V. Chilingarian, Developments in Petroleum Sience, 40A, Asphaltenes and Asphalts, 1, Elsevier Science, N. Y. (1994).
  3. J. G. Speight, Handbook of Petroleum Product Analysis, Wiley-Interscience (2002).
  4. T. F. Yen, Am. Chem. Soc., Div. Pet. Chem. Prepr., 17, F102 (1972).
  5. R. B. Girdler, Proc. Assoc. Asph. Pav. Tech., 34, 45 (1965).
  6. H. Fukuoka, Petrotech., 8, 437 (1985).
  7. J. S. Bahl and H. Singh, Revue de L'institut Francais de Petrole, 38, 413 (1983). https://doi.org/10.2516/ogst:1983024
  8. M. M. Boduszynski, Symposium on Chemistry of Asphaltene, Division of Petroleum, American Chemical Society, Washington DC. page 935 (1979).
  9. M. A. Quddus, S. N. Sarwar, and F. Khan, Fuel, 74, 684 (1995). https://doi.org/10.1016/0016-2361(95)91103-6
  10. H. E. Lubbers, Bitumen in de weg en waterbouw, Nederlands Adviesbureau voor Bitumentoepassingen, Gouda, April (1985).
  11. 田中晴也, 川付正明, 第 21回 日本道路協會論文集, 230 (1995).
  12. C. Gaestel, R. Simadaja, and K. A. Lamminan, Rev. Gen. Routes et Aerodromes, 466, 85 (1971).
  13. S. Gillet, P. Rubini, J. J. Delpeuch, J. C. Escalier, and P. Valentin, Fuel, 60, 221 (1981). https://doi.org/10.1016/0016-2361(81)90183-6
  14. S. Gillet, P. Rubini, J. J. Delpeuch, J. C. Escalier, and P. Valention, Fuel, 60, 226 (1981). https://doi.org/10.1016/0016-2361(81)90184-8
  15. J. Dereppe, C. Moreaux, and H. Castex, Fuel, 57, 435 (1978). https://doi.org/10.1016/0016-2361(78)90061-3
  16. M. U. Hasan, M. F. Ali, and A. Bukhari, Fuel, 62, 518 (1983). https://doi.org/10.1016/0016-2361(83)90219-3
  17. L. C. Michon, D. A. Netzel, T. F. Turner, D. Martin, and J. P. Planche, Energ. Fuel., 13, 602 (1999). https://doi.org/10.1021/ef980184r
  18. T. D. Khong, S. L. Malhotra, and L. Blanchard, Rheol. Acta, 17, 654 (1978). https://doi.org/10.1007/BF01522038
  19. J. F. Masson, V. Leblond, J. Margeson, and S. Bundalo-Perc, J. Microsc., 227, 191 (2007). https://doi.org/10.1111/j.1365-2818.2007.01796.x
  20. A. Adedeji, T. Grünfelder, F. S. Bates, and C. W. Macosko, Polym. Eng. Sci., 36, 1707 (1996). https://doi.org/10.1002/pen.10567
  21. G. M. Memon and B. H. Chollar, J. Therm. Anal., 49, 601 (1997). https://doi.org/10.1007/BF01996742
  22. E. S. Freeman and B. J. Carroll, J. Phys. Chem., 62, 394 (1958). https://doi.org/10.1021/j150562a003
  23. J. P. H. Pfeiffer and P. M. van Doormaal, J. Inst. Pet., 22, 414 (1936).