DOI QR코드

DOI QR Code

A Study on the Rheological Properties of Branched Polypropylene/silicate Composites

분지형 폴리프로필렌/실리케이트 복합체의 유변학적 특성 연구

  • Dahal, Prashanta (Department of Environment Engineering, Kongju National University) ;
  • Yoon, Kyung Hwa (Department of Environment Engineering, Kongju National University) ;
  • Kim, Youn Cheol (Department of Environment Engineering, Kongju National University)
  • 프러산터 (공주대학교 신소재공학부 고분자공학) ;
  • 윤경화 (공주대학교 신소재공학부 고분자공학) ;
  • 김연철 (공주대학교 신소재공학부 고분자공학)
  • Received : 2011.09.02
  • Accepted : 2011.10.12
  • Published : 2011.12.10

Abstract

Branched polypropylenes (LCB-PP) with a long chain branch were prepared by the solid-state and molt-state reaction. Divinylbenzene (DVB), 1,4-benzenediol (RES), and furfuryl sulphide (FS) were used as branching agents of fabricate LCB-PP/silicate composites. Chemical structures, thermal properties, and rheological properties of the LCB-PP were determined by FT-IR, DSC, TGA, and dynamic rheometer (ARES). The chemical structure of the LCB-PP was confirmed by the existence of =C-H stretching peak of the branching agent at $3100cm^{-1}$. From DSC and TGA results, the melting reaction was more effective than the solid state reaction in the manufacture of LCB-PP, which was additionally certified by rheological properties. Based on rheological properties, FS was the best for branching efficiency of PP. Compared to PP, LCB-PPs indicated an increase of complex viscosity in the low frequency and shear thinning tendency, and G'-G" plot represented an increase in elasticity and the heterogeneousness in a melt state. Rheological properties of LCB-PP/silicate composites were observed with the silicate content. When 5 wt% silicate was added in LCB-PP, distinct changes in the shear thinning and the slope of G'-G" plots were observed.

고상(solid state) 반응과 용융(melt state) 반응을 이용하여 장쇄분지(long chain branch, LCB)를 가지는 분지화된 폴리프로필렌(branched polypropylene, LCB-PP)을 제조하였다. 분지제(branching agent)로는 divinylbenzene (DVB), 1,4-benzenediol (RES), furfuryl sulphide (FS)가, LCB-PP/실리케이트 복합체를 제조하기 위해서는 층상 실리케이트가 사용되었다. LCB-PP의 화학구조, 열적특성, 유변학적 특성을 적외선 분광기(FT-IR), 시차주사열용량분석기(DSC, TGA), 그리고 동적유변측정기(ARES)를 이용하여 분석하였다. LCB-PP의 화학구조는 $3100cm^{-1}$에서 나타나는 분지제의 =C-H 신축진동을 이용하여 확인하였다. DSC와 TGA의 결과로부터 고상반응보다 용융반응이 LCB-PP 제조에 보다 효과적이었고, 유변학적 특성을 통하여 추가 확인되었다. 분지제 중에서는 FS가 가장 효과적이었다. LCB-PP의 경우 낮은 전단속도 영역에서 점도와 shear thinning tendency가 증가하였고, G'-G" plot으로부터 탄성특성의 증가와 LCB의 도입에 의한 용융상태의 불균일성(heterogeneousness)을 확인할 수 있었다. LCB-PP/실리케이트 복합체의 실리케이트 함량에 따른 유변학적 특성을 관찰하였다. 실리케이트의 함량이 5 wt%인 경우 면찰 담화(shear thinning)와 G'-G" plot에서의 기울기 변화가 가장 크게 나타났다.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. H. O. Chung, J. S. Lee, O. N. Kim, and J. C. Hyun, The Korean Journal of Rheology, 8, 119 (1996).
  2. S. Li, M. Xiao, D. Wei, H. Xiao, F. Hu, and A. Zheng, Polymer, 50, 6121 (2009). https://doi.org/10.1016/j.polymer.2009.10.006
  3. J. Li, C. Zhou, and W. Gang, Polymer Testing, 22, 217 (2003). https://doi.org/10.1016/S0142-9418(02)00085-5
  4. C. K. Hong, M. J. Kim, S. H. Oh, Y. S. Lee, and C. Nah, J. Ind. Eng. Chem., 14, 236 (2008). https://doi.org/10.1016/j.jiec.2007.11.001
  5. C. H. Hong, Y. B. Lee, J. W. Bae, J. Y. Jho, B. U. Nam, and T. W. Hwang, J. Ind. Eng. Chem., 11, 76 (2005).
  6. Y. C. Kim and C. Y. Lee, J. Korean Ind. Eng. Chem., 46, 106 (2008).
  7. O. M. Istrate and B. Chen, Soft Matter, 7, 1840 (2011). https://doi.org/10.1039/c0sm01052a
  8. W. Zhai, C. B. Park, and M. Kontopoulou, Ind. Eng. Chem. Res., 50, 7282 (2011) https://doi.org/10.1021/ie102438p
  9. E. Borsig, M. van Duin, A. D. Gotsis, and F. Picchioni, Euro. Polym. J., 44, 200 (2008). https://doi.org/10.1016/j.eurpolymj.2007.10.008
  10. C. J. Tsenoglou and A. D. Gotsis, Macromolecules, 34, 4685 (2001). https://doi.org/10.1021/ma010370n
  11. J. H. Tian, W. Yu, and C. X. Zhou, Polymer, 47, 7962 (2006). https://doi.org/10.1016/j.polymer.2006.09.042
  12. M. Yamaguchi and M. H. Wagner, Polymer, 47, 3629 (2006). https://doi.org/10.1016/j.polymer.2006.03.052
  13. S. A. Mousavi, S. Dadbin, M. Frounchi, D. C. Venerus, and T. G. Medina, Radiation Physics and Chemistry, 79, 1088 (2010). https://doi.org/10.1016/j.radphyschem.2010.04.010
  14. Kolodka, E. Wang, W.-J. Zhu, and S. Hamielec, A. Macromolecules, 35, 10062 (2002). https://doi.org/10.1021/ma021171m
  15. R. P. Lagendijk, A. H. Hogt, A. Buijtenhuijs, and A. D. Gotsis, Polymer, 42, 10035 (2001). https://doi.org/10.1016/S0032-3861(01)00553-5
  16. C. He, S. Costeux, P. Wood-Adams, and J. M. Dealy, Polymer, 44, 7181 (2003). https://doi.org/10.1016/j.polymer.2003.09.009
  17. S. J. Choi, K. H. Yoon, H. S. Kim, S. Y. Yoo, and Y. C. Kim, Polymer (Korea), 35, 1 (2011).
  18. H. Y. Kim, J. H. Jang, B. N. Kim, J. H. Lee, and D. H. Han, Applied Chemistry, 8, 378 (2004).
  19. S. H. Tabataba, P. J. Carreau, and A. Ajji, Chem. Eng. Sci., 64, 4719 (2009). https://doi.org/10.1016/j.ces.2009.04.009
  20. K. Hyun, K. H. Ahn, S. J. Lee, M. Sugimoto, and K. Koyama, Rheol Acta, 46, 123 (2006). https://doi.org/10.1007/s00397-006-0098-y
  21. F. Yu, H. Zhang, R. Liao, H. Zheng, W. Yu, and C. Zhou, Euro. Polym. J., 45, 2110 (2009). https://doi.org/10.1016/j.eurpolymj.2009.03.011
  22. M. A. Lopez Manchado, J. Biagiotti, L. Torre, and J. M. Kenny, J. Therm. Anal. Cal., 61, 437 (2000). https://doi.org/10.1023/A:1010165317028
  23. Z. J. Zhang, H. P. Xing, J. Qiu, Z. W. Jiang, H. O. Yu, X. H. Du, Y. H. Wang, L. Ma, and T. Tang, Polymer, 51, 1593 (2010). https://doi.org/10.1016/j.polymer.2010.01.063
  24. J. Qian, H. Zhamg, G. Cheng, Z. Huang, S. Dang, and Y. Xu, Sol-Gel Technol., 56, 300 (2010). https://doi.org/10.1007/s10971-010-2306-6