DOI QR코드

DOI QR Code

졸-겔 법에 의한 콜로이드 실리카와 유기 실란을 이용한 하드코팅 용액의 제조 및 특성

Synthesis and Characteristics of Hard Coating Solution Using Colloidal Silica and Organic Silane through Sol-Gel Process

  • Son, Dae Hee (CFC Teramate Co. Ltd.) ;
  • Lee, Yun-Yi (Technical R&D Center, Ukseung Chemical Co. Ltd.) ;
  • Kim, Seong Jin (Department of Industrial & Engineering Chemistry, Pukyong National University) ;
  • Hong, Seong-Soo (Department of Industrial & Engineering Chemistry, Pukyong National University) ;
  • Lee, Gun-Dae (Department of Industrial & Engineering Chemistry, Pukyong National University) ;
  • Park, Seong Soo (Department of Industrial & Engineering Chemistry, Pukyong National University)
  • 투고 : 2011.09.20
  • 심사 : 2011.11.10
  • 발행 : 2011.12.10

초록

졸-겔 공정을 활용하여 유무기 하이브리드 형태의 투명 필름용 하드코팅층에 사용되는 코팅졸을 제작하였다. 콜로이드 실리카와 알콕시 실란{vinyltrimethoxy silane : (VTMS)와 [3-(methacryloyloxy)] propyltrimethoxysilane : (MAPTMS)}을 이용하였고 다양한 조건에 따라 실험을 실시하였다. 이 졸은 PMMA와 교반하여 PET필름에 코팅막을 형성하였다. 코팅막에 대한 특성은 여러 가지 측정에 의해 확인하였다. 코팅막은 PMMA 단독에 비해서 유기실란 양이 첨부된 형태에서 코팅막의 연필경도와 기재와의 부착력이 우수하였고 실험된 조건에서 시란의 양이 증가할수록 연필경도가 증가하는 경향이 나타났다.

Organic-inorganic hybrid coating solutions were prepared by using a sol-gel method for transparent film. In this study, colloidal silica (CS) and alkoxy silane such as vinyltrimethoxysilane (VTMS), and [3-(methacryloyloxy)]propyltri methoxy silane (MAPTMS) were used in various conditions such as types of organic silane, weight ratios of CS to silane and reaction times. Coating solutions which were bar coated on the PET (polyethyleneterephthalate) film and cured were investigated on the chemical and physical properties. The pencil hardness and adhesion of coating films were increased with increasing the organic silane content in the coating solution compared to that of PMMA (polymethamethylcrylate) coating solution.

키워드

과제정보

연구 과제 주관 기관 : 한국연구재단, 중소기업청

참고문헌

  1. M. Menning, P. W. Oliveira, and H. Schmidt, Thin Solid Film, 351, 99 (1999). https://doi.org/10.1016/S0040-6090(99)00335-1
  2. H. Schmidt, J. Non-Crystalline Solids, 178, 302 (1994). https://doi.org/10.1016/0022-3093(94)90299-2
  3. J. M. Urrega, M. C. Matias, V. Lorenzo, and M. U. Orden, Mater. Lett., 45, 293 (2000). https://doi.org/10.1016/S0167-577X(00)00120-8
  4. C. J. Brinker, J. Non-Cryst. Solids, 100, 31 (1988). https://doi.org/10.1016/0022-3093(88)90005-1
  5. C. J. Brinker, K. D. Keefer, D. W. Schaefer, and C. S. Ashley, J. Non-Cryst. Solids, 48, 47 (1982). https://doi.org/10.1016/0022-3093(82)90245-9
  6. J. C. Brinker, K. D. Keefer, D. W. Schaefer, R. A. Assink, B. D. Kay, and C. S. Ashley, J. Non-Cryst. Solids, 63, 45 (1984). https://doi.org/10.1016/0022-3093(84)90385-5
  7. C. J. Brinker and G. W. Scherer, Sol-Gel Science : The Physics and Chemistry of Sol-Gel Processing, Academic Press, Boston (1990).
  8. S. E. Yoon, H. G. Woo, and D. P. Kim, Polymer (Korea), 24, 389 (2000).
  9. C. J. Cornelius and E. Marand, Polymer, 43, 2385 (2002). https://doi.org/10.1016/S0032-3861(01)00803-5