DOI QR코드

DOI QR Code

Simulation Study of Capacitively Coupled Oxygen Plasma with Plasma Chemistry including Detailed Electron Impact Reactions

전자충격반응을 포함하는 플라즈마 화학반응을 고려한 용량결합형 산소플라즈마의 전산모사 연구

  • Received : 2011.09.28
  • Accepted : 2011.10.07
  • Published : 2011.12.10

Abstract

Two dimensional simulation results of a capacitively coupled oxygen plasma in a cylindrical reactor geometry are presented. Detailed electron impact reaction rates, which strongly depend on electron energy, are computed from collision cross sections of electrons with $O_2$ and O. Through the coupling of a three moment plasma model with a neutral chemistry/transport model are predicted spatiotemporal distributions of both charged species (electron, $O_2{^+}$, $O^+$, $O_2{^-}$, and $O^-$) and neutral species including ground states ($O_2$ and O) and metastables, known to play important roles in oxygen plasma, such as $O_2(a^1{\Delta}_g)$, $O_2(b^1{{\Sigma}_g}^+)$, $O(^1D)$, and $O(^1S)$. The simulation results clearly verify the existence of a double layer near sheath boundaries in the electronegative plasma.

전자충격반응을 고려한 three moment 플라즈마 모델과 전기적 중성성분의 반응을 고려한 유체 유동 모델을 결합하여 용량결합형 산소플라즈마에 대한 2차원적 전산모사 연구를 수행하였다. 전자의 에너지에 의하여 좌우되는 전자충격반응에 대한 반응속도는 전자와 $O_2$ 및 O 사이의 전자충돌단면적으로부터 계산되었다. 플라즈마 모델과 유체 유동 모델을 결합하고 상세한 반응메커니즘을 포함시킴으로써 전하를 띠는 전자와 이온($O_2{^+}$, $O^+$, $O_2{^-}$, and $O^-$) 그리고 기저상태의 산소($O_2$ and O)뿐만 아니라 $O_2(a^1{\Delta}_g)$, $O_2(b^1{{\Sigma}_g}^+)$, $O(^1D)$, $O(^1S)$ 등과 같이 산소플라즈마 특성에 중요한 역할을 하는 준안정상태 성분들의 시공간적 분포를 예측할 수 있었다. 또한 산소플라즈마의 전산모사로부터 sheath 경계에 이중층이 존재함을 확인할 수 있었다.

Keywords

References

  1. S. K. Park, J. B. Kim, and H. C. Kim, J. KSDET, 8, 59 (2009).
  2. H. Mao, D. Wu, W. Wu, J. Xu, and Y. Hao, Nanotechnol., 20, 445304 (2009). https://doi.org/10.1088/0957-4484/20/44/445304
  3. S. Kim, C. Delker, P. Chen, C. Zhou, S. Ju, and D. B. Janes, Nanotechnol., 21, 145207 (2010). https://doi.org/10.1088/0957-4484/21/14/145207
  4. D. Hayashi and K. Kadota, Japan. J. Appl. Phys., 38, 225 (1999). https://doi.org/10.1143/JJAP.38.225
  5. H. M. Katsch, T. Sturm, E. Quandt, and H. F. Dobele, Plasma Sources Sci. Technol., 9, 323 (2000). https://doi.org/10.1088/0963-0252/9/3/310
  6. M. W. Kiehlbauch and D. B. Graves, J. Vac. Sci. Technol. A, 21, 660 (2003).
  7. J. T. Gudmundsson, J. Phys. D : Appl. Phys., 37, 2073 (2004). https://doi.org/10.1088/0022-3727/37/15/005
  8. H. C. Kim and V. I. Manousiouthakis, J. Vac. Sci. Technol., A, 16, 2162 (1998). https://doi.org/10.1116/1.581324
  9. H. C. Kim, Y. T. Sul, and V. I. Manousiouthakis, IEEE Trans. Plasma. Sci., 32, 399 (2004). https://doi.org/10.1109/TPS.2004.828126
  10. W. L. Morgan and B. M. Penetrante, Comput. Phys. Commun., 58, 127 (1990). https://doi.org/10.1016/0010-4655(90)90141-M
  11. A. V. Phelps, JILA Information Center Report No. 28, University of Colorado, Boulder (1985).
  12. E. Krishnakumar and S. K. Srivastava, Int. J. Mass Spectrom. Ion Processes, 113, 1 (1992). https://doi.org/10.1016/0168-1176(92)87037-F
  13. D. Rapp and D. D. Briglia, J. Chem. Phys., 43, 1480 (1965). https://doi.org/10.1063/1.1696958
  14. R. R. Laher and F. R. Gilmore, J. Phys. Chem. Ref. Data, 19, 277 (1990). https://doi.org/10.1063/1.555872
  15. M Mcfarland, D. L. Albritton, F. C. Fehsenfeld, E. E. Ferguson, and A. L. Schmeltekopf, J. Chem. Phys., 59, 6620 (1973). https://doi.org/10.1063/1.1680042
  16. R. M. Snuggs, D. J. Volz, J. H. Schummers, D. W. Martin, and E. W. Mcdaniel, Phys. Rev. A: At., Mol., Opt. Phys., 3, 477 (1971). https://doi.org/10.1103/PhysRevA.3.477
  17. F. C. Fehsenfeld, A. L. Schmeltekopf, H. I. Schiff, and E. E. Ferguson, Planetary and Space Science, 15, 373 (1967). https://doi.org/10.1016/0032-0633(67)90201-2
  18. F. C. Fehsenfeld, E. E. Ferguson, and A. L. Schmeltekopf, J. Chem. Phys., 45, 1844 (1966). https://doi.org/10.1063/1.1727844
  19. R. E. Olson, J. R. Peterson, and J. Moseley, J. Chem. Phys., 53, 3391 (1970). https://doi.org/10.1063/1.1674506
  20. W. H. Aberth and J. R. Peterson, Phys. Rev. A: At., Mol., Opt. Phys., 11, 158 (1970).
  21. F V. A. Feoktistov, D. V. Lopaev, K. S. Klopovsky, and O. B. Popovicheva, J. Nucl. Mater., 200, 309 (1993). https://doi.org/10.1016/0022-3115(93)90301-E
  22. K. Masek, L. Laska, and T. Ruzicka, Czech. J. Phys. Sec. B, B28, 1321 (1978).
  23. F. K. Schofield, Planetary and Space Science, 15, 643 (1967). https://doi.org/10.1016/0032-0633(67)90038-4
  24. M. Vialle, M. Touzeau, G. Gousset, and C. M. Ferreira, J. Phys. D: Appl. Phys., 24, 301 (1991). https://doi.org/10.1088/0022-3727/24/3/011
  25. Y. Ichikawa, R. L. C. Wu, and T. Kaneda, J. Appl. Phys., 67, 108 (1990). https://doi.org/10.1063/1.345288
  26. H. W. Ellis, R. Y. Pai, E. W. McDaniel, E. A. Mason, and L. A. Viehland, Atomic Data and Nuclear Data Tables, 17, 177 (1976). https://doi.org/10.1016/0092-640X(76)90001-2
  27. I. G. Kouznetsov, A. J. Lichtenberg, and M. A. Lieberman, J. Appl. Phys., 86, 4142 (1999). https://doi.org/10.1063/1.371339