DOI QR코드

DOI QR Code

Chip-based microcapillary HPLC for proteomic analysis

칩 기반 미세관 HPLC를 이용한 단백체 분석

  • Kim, Bo-Ra (Lee Gil Ya Cancer and Diabetes Institute, Gachon University) ;
  • Park, Jong-Moon (Lee Gil Ya Cancer and Diabetes Institute, Gachon University) ;
  • Lee, Hoo-Keun (Lee Gil Ya Cancer and Diabetes Institute, Gachon University)
  • 김보라 (가천대학교 이길여암당뇨연구원) ;
  • 박종문 (가천대학교 이길여암당뇨연구원) ;
  • 이후근 (가천대학교 이길여암당뇨연구원)
  • Received : 2011.11.14
  • Accepted : 2011.11.16
  • Published : 2011.12.25

Abstract

Over the last decade sophisticated and powerful microcapillary HPLC for proteomic analysis have been developed increasingly and interfaced with high resolution tandem mass spectrometers. Separation prior to mass spectrometric (MS) analysis removes impurities, and concentrates analytes in the narrow elution peaks, resulting in increased sensitivity of MS analysis. This review will focus on the recent advances of on-line highperformance separation techniques based on microfluidic chips for complex proteomic analysis.

지난 10년간 고해상도 탠덤질량분석기에 사용되는 다양한 미세관 HPLC들이 개발되어 단백체분석연구에 사용되어져 왔다. 질량분석에 앞선 분리과정은 샘플 중의 불순물을 제거하며, 분석물을 좁은 용리 피크 내에 농축함으로써 이어지는 질량분석의 민감도를 향상시킬 수 있다. 본 총설에서는 복잡한 단백체 분석에 사용되는 미세유체 칩을 기반으로 하는 고성능 분리 기술들의 최근 개발 동향을 고찰하였다.

Keywords

References

  1. J. B. Fenn, M. Mann, C. K. Meng, S. F. Wong and C. M. Whitehouse, Science, 246, 64-71 (1989). https://doi.org/10.1126/science.2675315
  2. M. Karas and F. Hillenkamp, Anal. Chem., 60, 2299- 2301 (1995).
  3. M. Wilm and M. Mann, Anal. Chem., 68, 1-8 (1996).
  4. A. Shevchenko, M. Wilm, O. Vorm, and M. Mann, Anal. Chem., 68, 850-858 (1996). https://doi.org/10.1021/ac950914h
  5. Y. Ishihama, J. of Chromatogr. A, 1067, 73-80 (2005). https://doi.org/10.1016/j.chroma.2004.10.107
  6. M. A. Moseley, L. J. Deterding, K. B. Tomer and J. W. Jorgenson, Anal. Chem., 63, 1467-1473 (1991). https://doi.org/10.1021/ac00014a023
  7. L. A. Holland and J. W. Jorgenson, Anal. Chem., 67, 3275-3283 (1995). https://doi.org/10.1021/ac00114a026
  8. Y. Shen, R. J. Moore, R. Zhao, J. Blonder, D. L. Auberry, C. Masselon, L. Pasa-Tolic, K. K. Hixson, K. J. Auberry and R. D. Smith, Anal. Chem., 75, 3596-3605 (2003). https://doi.org/10.1021/ac0300690
  9. M. E. Belov, G. A. Anderson, M. A. Wingerd, H. R. Udseth, K. Tang, D. C. Prior, K. R. Swanson, M. A. Buschbach, E. F. Strittmatter and R. J. Moore, J. Am. Soc. Mass Spectrom., 15, 212-232 (2004). https://doi.org/10.1016/j.jasms.2003.09.008
  10. H. Yin, K. Killeen, R. Brennen, D. Sobek, M. Werlich and T. Goor, Anal. Chem., 77, 527-533 (2005). https://doi.org/10.1021/ac049068d
  11. M. H. Fortier, E. Bonneil, P. Goodley and P. Thibault, Anal. Chem., 77, 1631-1640 (2005). https://doi.org/10.1021/ac048506d
  12. H. Yin and K. Killeen, J. Sep. Sci. 30, 1427-1434 (2007). https://doi.org/10.1002/jssc.200600454
  13. H. Lee, E. C. Yi, B. Wen, T. P. Reily, L. Pohl, S. Nelson, R. Aebersold and D. R. Goodlett, J. Chromatogr. B, 803, 101-110 (2004). https://doi.org/10.1016/j.jchromb.2003.09.005
  14. M.-Y. Brusniak, B. Bodenmiller, D. Campbell, K. Cooke, J. Eddes, A. Garbutt, H. Lau, S. Letarte, L. N. Mueller, V. Sharma, O. Vitek, N. Zhang, R. Aebersold and J. D. Watts, BMC Bioinformatics, 9, 542 (2009). https://doi.org/10.1186/1471-2105-9-542
  15. M. A. Bynum, H. Yin, K. Felts, Y. M. Lee, C. R. Monell and K. Killeen, Anal. Chem., 81, 8818-8825 (2009). https://doi.org/10.1021/ac901326u
  16. J. R. Rasmussen, J. Davis, J. M. Risley and R. L. Van Etten, J. Am. Chem. Soc., 114(3), 1124-1126 (1992). https://doi.org/10.1021/ja00029a071

Cited by

  1. Gastric biomarker study using proteomic method vol.12, pp.1, 2016, https://doi.org/10.14216/kjco.16002