DOI QR코드

DOI QR Code

Synthesis and Photovoltaic Properties of New π-conjugated Polymers Based on 2,3-dimethyl-5,8-dithiophen-2-yl-quinoxaline

2,3-Dimethyl-5,8-dithiophen-2-yl-quinoxaline을 기본 골격으로 한 새로운 고분자 물질의 합성 및 광전변환특성

  • Shin, Woong (Department of Polymer Engineering, Pukyong National University) ;
  • Park, Jeong Bae (Department of Polymer Engineering, Pukyong National University) ;
  • Park, Sang Jun (Department of Polymer Engineering, Pukyong National University) ;
  • Jo, Mi Young (Department of Polymer Engineering, Pukyong National University) ;
  • Suh, Hongsuk (Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University) ;
  • Kim, Joo Hyun (Department of Polymer Engineering, Pukyong National University)
  • 신웅 (부경대학교 응용화학공학부 고분자공학과) ;
  • 박정배 (부경대학교 응용화학공학부 고분자공학과) ;
  • 박상준 (부경대학교 응용화학공학부 고분자공학과) ;
  • 조미영 (부경대학교 응용화학공학부 고분자공학과) ;
  • 서홍석 (부산대학교 화학과) ;
  • 김주현 (부경대학교 응용화학공학부 고분자공학과)
  • Received : 2010.07.01
  • Accepted : 2010.08.27
  • Published : 2011.02.10

Abstract

Poly[2,3-dimethyl-5,8-dithiophene-2-yl-quinoxaline-alt-9,9-dihexyl-9H-fluorene] (PFTQT) and poly[2,3-dimethyl-5,8-dithiophen-2-yl-quinoxaline-alt-10-hexyl-10H-phenothiazine (PPTTQT) based on 2,3-dimethyl-5,8-dithiophen-2-yl-quinoxaline weresynthesized by Suzuki coupling reaction. All polymers were soluble in common organic solvents such as chloroform, chlorobenzene, o-dichlorobenzene, tetrahydrofuran (THF) and toluene. The maximum absorption wavelength and band gap of PFTQT were 440 nm and 2.30 eV, and PPTTQT were 445 nm and 2.23 eV, respectively. The HOMO and LUMO energy level of PFTQT were -6.05 and -3.75 eV, and PPTTQT were -5,89 and -3.66 eV, respectively. The organic photovoltaic devices based on the blend of polymer and PCBM (1 : 2 by weight ratio) were fabricated. Efficiencies of devices were 0.24% (PFTQT) and 0.16% (PPTTQT), respectively. The short circuit current density ($J_{sc}$), fill factor (FF), and open circuit voltage ($V_{oc}$) of the device with PFTQT were $0.97mA/cm^2$, 29% and 0.86 V, and the device based on PPTTQT were $0.80mA/cm^2$, 28% and 0.71 V, 31% and 0.71 V, respectively, under air mass (AM) 1.5 G and 1 sun condition ($100mA/cm^2$).

2,3-Dimethyl-5,8-dithiophen-2-yl-quinoxaline을 기본 골격으로 한 poly[2,3-dimethyl-5,8-dithiophene-2-yl-quinoxaline-alt-9,9-dihexyl-9H-fluorene] (PFTQT)과 poly[2,3-dimethyl-5,8-dithiophene-2-yl-quinoxaline-alt-10-hexyl-10H-phenothiazine] (PPTTQT)을 Suzuki coupling법을 이용하여 중합 하였다. 합성된 고분자들은 chloroform, chlorobenzene, o-dichlorobenzene, tetrahydrofuran (THF), toluene과 같은 유기용매에 대한 용해도가 우수하였고, PFTQT의 최대흡수파장과 밴드 갭은 각각 440 nm와 2.30 eV이고, PPTTQT의 경우는 각각 445 nm와 2.23 eV이었다. PFTQT의 HOMO 및 LUMO 에너지준위는 -6.05와 -3.75 eV이고, PPTTQT의 경우는 각각 -5.89와 -3.66 eV이었다. 합성된 고분자들과 전자 받개 물질인 (6)-1-(3-(methoxycarbonyl)-{5}-1-phenyl[5,6]-fullerene (PCBM)을 1 : 2의 중량비로 블렌딩하여 제작한 태양전지의 효율은 AM (air mass) 1.5 G, 1 sun 조건($100mA/cm^2$)에서 PFTQT는 0.24%, PPTTQT의 경우는 0.16%로 측정되었다. 그리고 소자의 단락전류 밀도($J_{sc}$), FF (fill factor)와 개방전압($V_{oc}$)은 PFTQT의 경우 각각 $0.97mA/cm^2$, 29%, 0.86 V이며, PPTTQT의 경우 각각 $0.80mA/cm^2$, 28%, 0.71 V이었다.

Keywords

Acknowledgement

Supported by : 한국연구재단, 교육과학기술부

References

  1. J. U. Ju, S. O. Jung, Q. H. Zhao, Y. H. Kim, J. T. Je, and S. K. Kwon, Bull. Korean Chem. Soc., 29, 335 (2008). https://doi.org/10.5012/bkcs.2008.29.2.335
  2. J. Roncali, Chem. Rev., 92, 711 (1992). https://doi.org/10.1021/cr00012a009
  3. G. Yu, J. Cao, J. C. Hummelen, F. Wudl, and A. J. Heeger, Science, 270, 1789 (1996).
  4. G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, Nat. Mater., 4, 864 (2005). https://doi.org/10.1038/nmat1500
  5. J. J. M. Halls, K. Pichler, R. H. Friend, S. C. Moratti, and A. B. Holmes, Appl. Phys. Lett., 68, 3120 (1996). https://doi.org/10.1063/1.115797
  6. G. Yu and A. J. Heeger, J. Appl. Phys., 78, 4510 (1995). https://doi.org/10.1063/1.359792
  7. C. J. Brabec, N. S. Sariciftci, and J. C. Hummelen, Adv. Func. Mater., 11, 15 (2001). https://doi.org/10.1002/1616-3028(200102)11:1<15::AID-ADFM15>3.0.CO;2-A
  8. M. Granstrom, K. Petritsch, A. C. Arias, A. Lux, M. R. Andersson, and R. H. Friend, Nature, 397, 257 (1998).
  9. W. Ma, C. Yang, X. Gong, K. Lee, and A. J. Heeger, Adv. Func. Mater., 15, 1617 (2005). https://doi.org/10.1002/adfm.200500211
  10. J. Hou, H. Y. Chen, S. Zhang, R. I. Chen Y. Yang, Y. Wu, and G. Li, J. Am. Chem. Soc., 131, 15586 (2009). https://doi.org/10.1021/ja9064975
  11. J. H. Kim and H. Lee, Synth. Met., 157, 1040 (2007). https://doi.org/10.1016/j.synthmet.2007.10.013
  12. M. Sailer, A. W. Franz, and T. J. J. Muller, Chem. Eur. J., 14, 2602 (2008) https://doi.org/10.1002/chem.200701341
  13. R. Yang, R. Tian, J. Yan, Y. Zhang, J. Yang, Q. Hou, W. Yang, C. Zhang, and Y. Cao, Macromolecules, 38, 244 (2005). https://doi.org/10.1021/ma047969i
  14. J. B. Baek, J. B, Ferguson, and L. S. Tan, Macromolecules, 36, 4385 (2003). https://doi.org/10.1021/ma030039z
  15. M. S. Jung, W. Shin, S. J. Park, H. R. You, J. B. Park, H. Suh, Y. Lim, D. Y. Yoon, and J. H. Kim, Synth. Met., 159, 1928 (2009). https://doi.org/10.1016/j.synthmet.2009.05.034
  16. M. Svensson, F. Zhang, S. C. Veenstra, W. J. H. Verhees, J. C. Hummelen, J. M. Kroon, O. Inganäs, and M. R. Andersson, Adv. Mater., 15, 988 (2003). https://doi.org/10.1002/adma.200304150
  17. S. Beaupre, J. Dumas, and M. Leclerc, Chem. Mater., 18, 4011 (2006). https://doi.org/10.1021/cm060407o
  18. X. Kong, A. P. Kulkarni, and S. A. Jenekhe, Macromolecules, 36, 8992 (2003). https://doi.org/10.1021/ma035087y
  19. C. C. Wu, J. C. Strum, R. A. Register, J. Tian, and E. P. Dana, Thompson, M. E. IEEE Trans. Electron Devices, 44, 1269 (1997). https://doi.org/10.1109/16.605468
  20. S. Chan, C. Chen, T. Cao, T. C. Ting, and B. Ko, Macromolecules, 41, 5519 (2008). https://doi.org/10.1021/ma800494k
  21. J. M. Kroon, M. M. Wienk, W. J. H Verhees, and J. C. Hummelen, Thin Solid Films, 403, 223 (2002).
  22. C. P. Chen, S. H. Chan, T. C. Chao, C. Ting, and B. T. Ko, J. Am. Chem. Soc., 130, 12828 (2008). https://doi.org/10.1021/ja801877k