DOI QR코드

DOI QR Code

Energy Conversion Efficiency of TiO2 Dye-sensitized Solar Cells with WO3 Additive

WO3가 첨가된 TiO2 염료감응형 태양전지의 에너지 전환 효율

  • Lee, Sung Kyu (Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University) ;
  • Lee, Young-Seak (Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University)
  • 이성규 (충남대학교 정밀응용화학과) ;
  • 이영석 (충남대학교 정밀응용화학과)
  • Received : 2010.07.27
  • Accepted : 2010.09.27
  • Published : 2011.02.10

Abstract

In order to improve the energy conversion efficiency of dye-sensitized solar cell (DSSC), the photoelectrode was manufactured by using $TiO_2$ and $WO_3$ on combination effects of two conduction bands. The smash procedure of $TiO_2$ and $WO_3$ was carried out by using a paint shaker to enlarge the contact area of semiconductor with dye and electrolyte. The energy conversion efficiency of prepared DSSC was improved about two times from current-voltage curve based on effects of $WO_3$ and smash. The mechanism was suggested that the conduction band of $WO_3$ worked for prohibiting the trapping effects of electrons in conduction band of $TiO_2$. This result is attributed to the prevention of electron recombination between electron in conduction band of $TiO_2$ with dye and electrolyte. Impedance results indicate the improved electron transport at interface of $TiO_2$/dye/electrolyte.

염료 감응형 태양전지의 에너지 전환 효율을 향상시키고자 $TiO_2$$WO_3$을 첨가하여 광전극을 제조하고 그 전기화학적 특성 평가를 하였다. 또한 $WO_3$가 첨가된 $TiO_2$를 회쇄함으로써 회쇄 효과가 전지효율에 미치는 영향을 고찰하였다. I-V 곡선을 통하여 측정된 염료 감응형 태양전지의 효율은 $WO_3$ 첨가 및 회쇄 효과에 의하여 2.8에서 6.0%로 크게 증가하였다. 이와 같은 결과는 $TiO_2$의 전도대에서 전달되는 전자가 염료 및 전해질과 재결합되기 전에 $TiO_2$의 전도대보다 낮은 $WO_3$의 전도대를 통해 전달되기 때문에 전체 전류의 양이 증가되어 효율이 증가한 것으로 여겨진다. 또한, 임피던스 결과로부터 $TiO_2$/염료/전해질 계면의 저항 값이 감소하는 것을 확인하였다.

Keywords

References

  1. H. Chang, T. L. Chen, K. D. Huang, S. H. Chien, and K. C. Hung, J. Alloy. Compd., 504, 435 (2010). https://doi.org/10.1016/j.jallcom.2010.06.001
  2. M. Gratzel, C. R. Chim., 9, 578 (2006). https://doi.org/10.1016/j.crci.2005.06.037
  3. W. H. Lai, Y. H. Su, L. G. Teoh, and M. H. Hon, J. Photochem. Photobiol. A-Chem., 195, 307 (2008). https://doi.org/10.1016/j.jphotochem.2007.10.018
  4. J. K. Lee, B. H. Jeong, S. Jang, Y. G. Kim, Y. W. Jang, S. B. Lee, and M. R. Kim, J. Ind. Eng. Chem., 15, 724 (2009). https://doi.org/10.1016/j.jiec.2009.09.053
  5. S. U. Lee, W. S. Choi, and B. Hong, Sol. Energy Mater. Sol. Cells, 94, 680 (2010). https://doi.org/10.1016/j.solmat.2009.11.030
  6. F. L. Chen, A. Letortu, C. Y. Liao, C. K. Tsai, H. L. Huang, I. W. Sun, Y. L. Wei, and H. P. Wang, Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip., 619, 112 (2010). https://doi.org/10.1016/j.nima.2010.02.075
  7. Y. Lee, J. Chae, and M. Kang, J. Ind. Eng. Chem., 16, 609 (2010). https://doi.org/10.1016/j.jiec.2010.03.008
  8. S. Hao, J. Wu, L. Fan, Y. Huang, J. Lin, and Y. Wei, Sol. Energy, 76, 745 (2004). https://doi.org/10.1016/j.solener.2003.12.010
  9. S. H. Kang, M. S. Kang, S. H. Choi, J. Y. Kim, H. S. Kim, T. Hyeon, and Y. E. Sung, Electrochem. Commun., 10, 1326 (2008). https://doi.org/10.1016/j.elecom.2008.07.004
  10. V. Ganapathy, B. Karunagaran, and S. W. Rhee, J. Power Sources, 195, 5138 (2010). https://doi.org/10.1016/j.jpowsour.2010.01.085
  11. K. Fan, T. Peng, B. Chai, J. Chen, and K. Dai, Electrochim. Acta, 55, 5239 (2010). https://doi.org/10.1016/j.electacta.2010.04.051
  12. J. H. Lee, N. G. Park, and Y. J. Shin, Sol. Energy Mater. Sol. Cells, 95, 179 (2011). https://doi.org/10.1016/j.solmat.2010.04.027
  13. S. Sakthivel, M. V. Shankar, M. Palanichamy, B. Arabindoo, D. W. Bahnemann, and V. Murugesan, Water Res., 38, 3001 (2004). https://doi.org/10.1016/j.watres.2004.04.046
  14. H. Xu, X. Tao, D. T. Wang, Y. Z. Zheng, and J. F. Chen, Electrochim. Acta, 55, 2280 (2010). https://doi.org/10.1016/j.electacta.2009.11.067
  15. M. K. Parvez, G. M. Yoo, J. H. Kim, M. J. Ko, and S. R. Kim, Chem. Phys. Lett., 495, 69 (2010). https://doi.org/10.1016/j.cplett.2010.06.038
  16. S. M. Waita, B. O. Aduda, J. M. Mwabora, C. G. Granqvist, S. E. Lindquist, G. A. Niklasson, A. Hagfeldt, and G. Boschloo, J. Electroanal. Chem., 605, 151 (2007). https://doi.org/10.1016/j.jelechem.2007.04.001
  17. L. Meng, T. Ren, and C. Li, Appl. Surf. Sci., 256, 3676 (2010). https://doi.org/10.1016/j.apsusc.2009.12.169
  18. J. Wu, G. Xie, J. Lin, Z. Lan, M. Huang, and Y. Huang, J. Power Sources, 195, 6937 (2010). https://doi.org/10.1016/j.jpowsour.2010.04.081
  19. Z. Tang, J. Wu, Q. Li, Z. Lan, L. Fan, J. Lin, and M. Huang, Electrochim. Acta, 55, 4883 (2010). https://doi.org/10.1016/j.electacta.2010.03.081
  20. Y. Lee and M. Kang, Mater. Chem. Phys., 122, 284 (2010). https://doi.org/10.1016/j.matchemphys.2010.02.050
  21. L. Dupuy, S. Haller, J. Rousset, F. Donsanti, J. F. Guillemoles, D. Lincot, and F. Decker, Electrochem. Commun., 12, 697 (2010). https://doi.org/10.1016/j.elecom.2010.03.009
  22. L. Lu, R. Li, K. Fan, and T. Peng, Sol. Energy, 84, 844 (2010). https://doi.org/10.1016/j.solener.2010.02.010
  23. P. Balraju, P. Suresh, M. Kumar, M. S. Roy, and G. D. Sharma, J. Photochem. Photobiol. A-Chem., 206, 53 (2009). https://doi.org/10.1016/j.jphotochem.2009.05.014
  24. K. Pan, Y. Dong, C. Tian, W. Zhou, G. Tian, B. Zhao, and H. Fu, Electrochim. Acta, 54, 7350 (2009). https://doi.org/10.1016/j.electacta.2009.07.065
  25. J. A. Mikroyannidis, M. M. Stylianakis, M. S. Roy, P. Suresh, and G. D. Sharma, J. Power Sources, 194, 1171 (2009). https://doi.org/10.1016/j.jpowsour.2009.06.002
  26. L. Bay, K. West, B. W. Jensen, and T. Jacobsen, Sol. Energy Mater. Sol. Cells, 90, 341 (2006). https://doi.org/10.1016/j.solmat.2005.04.040
  27. L. Y. Lin, C. P. Lee, R. Vittal, and K. C. Ho, J. Power Sources, 195, 4344 (2010). https://doi.org/10.1016/j.jpowsour.2010.01.031