DOI QR코드

DOI QR Code

Optimization of Biodiesel Synthesis Process Using Spent Coffee Grounds

커피가루를 이용한 바이오디젤의 제조공정 최적화

  • La, Joo-Hee (Division of Energy & Biological Engineering, Kyungwon University) ;
  • Lee, Seung-Bum (Division of Energy & Biological Engineering, Kyungwon University) ;
  • Lee, Jae-Dong (Division of Energy & Biological Engineering, Kyungwon University)
  • 라주희 (경원대학교 환경에너지공학전공) ;
  • 이승범 (경원대학교 환경에너지공학전공) ;
  • 이재동 (경원대학교 환경에너지공학전공)
  • Received : 2010.10.03
  • Accepted : 2010.11.01
  • Published : 2011.02.10

Abstract

In this study, we investigated the characteristics of biodiesel using the waste coffee oil which was extracted by waste coffee grounds. We tried to deduce the optimum conditions by defining the operating variables, such as mole ratio between methanol and coffee oil (6~18) and the reaction temperature ($45{\sim}60^{\circ}C$) in the biodiesel production processes. The performance was evaluated in terms of yields, contents of fatty acid methyl ester (FAME), viscosities, and heating values. The optimum reaction temperature was $55^{\circ}C$. Also, the best biodiesel was produced at the mole ratio between methanol and coffee oil of 12. The highest heating value of the produced biodiesel made from coffee oil was 39.0~39.4 MJ/kg, which satisfies the general standard for the biodiesel energy density, 39.3~39.8 MJ/kg.

본 연구에서는 폐커피가루를 이용하여 커피유를 추출한 후 커피유를 이용한 바이오디젤의 제조특성을 고찰하였다. 커피유의 바이오디젤 제조의 변수로는 메탄올/커피유 반응몰비(6~18), 반응온도($45{\sim}60^{\circ}C$) 등을 선정하여 커피유의 바이오디젤 제조 시 최적조건을 결정하고자 하였다. 제조된 바이오디젤의 성능은 바이오디젤 수율, methyl ester 함량, 점도, 발열량 등을 측정하여 평가하였다. 평가결과 바이오디젤 수율 및 methyl ester 함량을 고려한 최적 반응온도는 $55^{\circ}C$이었으며, 메탄올/커피유 몰비가 12일 경우 가장 우수한 바이오디젤을 제조할 수 있었다. 커피유를 이용하여 제조된 바이오디젤의 발열량을 측정한 결과 39.0~39.4 MJ/kg으로 바이오디젤 기준인 39.3~39.8 MJ/kg을 만족하였다.

Keywords

Acknowledgement

Supported by : 경원대학교

References

  1. Y.-K. Lim, S.-C. Shin, E.-S, Yim, and H.-O. Song, J. Korean Ind. Eng. Chem., 19, 137 (2008).
  2. Gaya Energy, Ministry of Environment, 31 (2005).
  3. Z. Helwani, M. R. Othman, N. Aziz, and J. Kim, Fuel Process. Technol., 90, 1502 (2009). https://doi.org/10.1016/j.fuproc.2009.07.016
  4. D. Y. C. Leung, X. Wu, and M. K. H. Leung, Appl. Energy, 87, 1083 (2009).
  5. G. J. Van, B. Shanks, R. Pruszko, D. Clement, and G. Knothe, National Renewable Energy Laboratory, 1 (2004).
  6. M. Fangrui and A. H. Milford, Bioresour. Technol., 70, 1 (1999). https://doi.org/10.1016/S0960-8524(99)00025-5
  7. B. H. Uma and Y. S. Kim, J. Ind. Eng. Chem., 15, 1 (2009). https://doi.org/10.1016/j.jiec.2008.08.002
  8. H.-S. Seo, H.-J. Kang, E.-H. Jung, and I.-K. Hwang, Korea J. Food Cookery Sci., 22, 299 (2006).
  9. S. J. Lee and E. Y. Kim, Korean J. Biotechnol. Bioeng, 17, 396 (2002).
  10. M. Mittelbach and C. Remschmidt, Biodiesel-the Comprehensive Hanbook, M. Mittelbach, Graz, Austria (2004).
  11. G. T. Jeong and D. H. Park, Appl. Biochem. Biotechnol., 129, 668 (2006).
  12. N. Kondamudi, S. K. Mohapatra, and M. Misra, J. Agric. Food Chem., 56, 11757 (2008). https://doi.org/10.1021/jf802487s
  13. S.-B. Shin, B.-W. Min, S.-H. Yang, M.-S. Park, H.-S. Kim, and D.-H. Baik, J. Korean Oil Chemists' Soc., 25, 58 (2008).
  14. S.-B. Lee, K.-H. Han, J.-D. Lee, and I.-K. Hong, J. Ind. Eng. Chem., 16, 1006 (2010). https://doi.org/10.1016/j.jiec.2010.09.015
  15. A. Demirbas, Fuel, 77, 1117 (1998). https://doi.org/10.1016/S0016-2361(97)00289-5