DOI QR코드

DOI QR Code

Analysis on Thermogravimetric Characteristics about Copyrolysis of Waste Wood Chip and Linear Low Density Polyethylene

선형 저밀도 폴리에틸렌과 폐목재 우드칩 혼합열분해의 열중량 특성 분석

  • Lee, Young-Man (Department of Civil & Environmental Engineering, Graduate School, Hanyang University) ;
  • Bae, Wookeun (Department of Civil & Environmental Engineering, Graduate School, Hanyang University) ;
  • Park, Young-Kwon (Graduate School of Energy and Environmental System Engineering, University of Seoul)
  • 이영만 (한양대학교 건설환경공학과) ;
  • 배우근 (한양대학교 건설환경공학과) ;
  • 박영권 (서울시립대학교 에너지환경시스템공학과)
  • Received : 2010.10.23
  • Accepted : 2010.11.03
  • Published : 2011.02.10

Abstract

Copyrolysis of biomass/plastic mixture was carried out from room temperature to $600^{\circ}C$ with varing the heating rates of 10, 20, and $30^{\circ}C/min$ using a thermogravimetric analyzer. Waste wood chip (WWC) and linear low density polyethylene (LLDPE) were selected as a biomass and plastic, respectively. Individual pyrolysis temperature ranges were $430{\sim}550^{\circ}C$ and $230{\sim}600^{\circ}C$ for LLDPE and WWC, respectively. For the copyrolysis of WWC and LLDPE, the decomposition temperature range of WWC was not varied, while the decomposition temperature range of LLDEP was increased to a higher temperature. The results imply that the interaction might occur between LLDEP and WWC during copyolyis of LLDPE and WWC.

열 중량 분석기를 이용하여, 상온에서부터 $600^{\circ}C$까지 10, 20, and $30^{\circ}C/min$의 승온 속도로 바이오매스/플라스틱 혼합물의 혼합열분해를 수행하였다. 바이오매스는 폐목재 우드칩(WWC)을 사용하였고, 플라스틱은 선형저밀도 폴리에틸렌(LLDPE)을 시료로 사용하였다. LLDPE 단독 분해시 $430{\sim}550^{\circ}C$, WWC 단독 분해시는 $230{\sim}600^{\circ}C$에서 분해되었으나, 두 가지 시료를 혼합하여 혼합열분해 한 결과, WWC에 해당하는 분해 온도는 일정한 반면 LLDPE 분해구간의 분해온도가 상승하였다. 이러한 실험결과는 높은 온도범위에서 LLDPE와 WWC이 혼합열분해 되는 동안에 상호작용이 일어났음을 의미한다.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. H. J. Park, J. I. Dong, J. K. Jeon, Y. K. Park, K. S. Yoo, S. S. Kim, J. S. Kim, and S. D. Kim, Chem. Eng. J., 143, 124 (2008). https://doi.org/10.1016/j.cej.2007.12.031
  2. H. J. Park, Y. K. Park, J. I. Dong, J. S. Kim, J. K. Jeon, S. S. Kim, J. S. Kim, B. H. Song, J. H. Park, and K. J. Lee, Fuel Process. Technol., 90, 186 (2009). https://doi.org/10.1016/j.fuproc.2008.08.017
  3. H. S. Heo, H. J. Park, Y. K. Park, C. Ryu, D. J. Suh, Y. W. Suh, J. H. Yim, and S. S. Kim, Bioresour. Tehcnol., 101, S91 (2010). https://doi.org/10.1016/j.biortech.2009.06.003
  4. H. J. Park, H. S. Heo, Y. K. Park, J. H. Yim, J. K. Jeon, J. Park, C. Ryu, and S. S. Kim, Bioresour. Technol., 101, S83 (2010). https://doi.org/10.1016/j.biortech.2009.06.103
  5. H. S. Heo, H. J. Park, J. H. Yim, J. M. Sohn, J. Park, S. S. Kim, C. Ryu, and Y. K. Park, Bioresour. Technol., 101, 3672 (2010). https://doi.org/10.1016/j.biortech.2009.12.078
  6. V. I. Sharypov, N. Marin, N. G. Beregovtsova, S. V. Baryshnikov, B. N. Kuznetzov, V. L. Cebolla, and J. V. Weber, J. Anal. Appl. Pyrolysis, 64, 15 (2002). https://doi.org/10.1016/S0165-2370(01)00167-X
  7. A. Aboulkas, K. E. Harfi, and A. E. Bouadili, Energy Convers. Manage., 49, 3666 (2008). https://doi.org/10.1016/j.enconman.2008.06.029
  8. E. Jakab, G. Varhegyi, and O. Faix, J. Anal. Appl. Pyrolysis, 56, 273 (2000). https://doi.org/10.1016/S0165-2370(00)00101-7
  9. A. Fraga, R. A. Ruseckaite, and A. Jimenez, Polymer Testing, 24, 526 (2005). https://doi.org/10.1016/j.polymertesting.2004.11.013
  10. C. Dong, Y. Yang, B. Jin, and M. Horio, Waste Manage., 27, 1557 (2007). https://doi.org/10.1016/j.wasman.2006.10.021
  11. S. S. Idris, N. A. Rahman, K. Ismail, A. B. Alias, Z. A. Rashid, and M. J. Aris, Bioresour. Technol., 101, 4584 (2010). https://doi.org/10.1016/j.biortech.2010.01.059
  12. L. Zhou, Y. Wang, Q. Huang, and J. Cai, Fuel Process. Technol., 87, 963 (2006). https://doi.org/10.1016/j.fuproc.2006.07.002