DOI QR코드

DOI QR Code

Synthesis and Characterization of Interfacial Properties of Glycerol Surfactant

글리세롤계 계면활성제 합성 및 계면 특성에 관한 연구

  • Lim, JongChoo (Department of Chemical and Biochemical Engineering, Dongguk University-Seoul) ;
  • Lee, Seul (Department of Chemical and Biochemical Engineering, Dongguk University-Seoul) ;
  • Kim, ByeongJo (AK ChemTech Central Research Lab.) ;
  • Lee, JongGi (AK ChemTech Central Research Lab.) ;
  • Choi, KyuYong (AK ChemTech Central Research Lab.)
  • 임종주 (동국대학교 공과대학 화공생물공학과) ;
  • 이슬 (동국대학교 공과대학 화공생물공학과) ;
  • 김병조 (에이케이켐텍(주) 중앙연구소) ;
  • 이종기 (에이케이켐텍(주) 중앙연구소) ;
  • 최규용 (에이케이켐텍(주) 중앙연구소)
  • Received : 2011.03.21
  • Accepted : 2011.05.03
  • Published : 2011.08.10

Abstract

The CMCs of LA and LA3 nonionic surfactants obtained from the reaction between glycidol and lauryl alcohol were found to be $0.97{\times}10^{-3}mol/L$ and $1.02{\times}10^{-3}mol/L$ respectively and the surface tensions for 1 wt% surfactant were 26.99 and 27.48 mN/m respectively. Dynamic surface tension measurements using a maximum bubble pressure tensiometer showed that the adsorption rate of surfactant molecules at the interface between the air and the surfactant solution was found to be relatively fast in both surfactant systems, presumably due to the high mobility of surfactant molecules. The contact angles of LA and LA3 nonionic surfactants were 27.8 and $20.9^{\circ}$ respectively and the dynamic interfacial tension measurement by a spinning drop tensiometer showed that interfacial tensions at equilibrium condition in both systems were almost the same. Also both surfactant systems reached equilibrium in 2~3 min. Both surfactant solutions showed high stability when evaluated by conductometric method and the LA nonionic surfactant system provided the higher foam stability than the LA3 nonionic surfactant system. The phase behavior experiments showed a lower phase or oil in water (O/W) microemulsion in equilibrium with an excess oil phase at all temperatures studied. No three-phase region was observed including a middle-phase microemulsion or a lamellar liquid crystalline phase.

글리시돌과 라우릴 알코올을 반응시켜 합성한 LA와 LA3 비이온계면활성제의 CMC는 각각 $0.97{\times}10^{-3}mol/L$, $1.02{\times}10^{-3}mol/L$이며, 1 wt% 농도에서의 표면장력은 26.99 mN/m과 27.48 mN/m이었다. 동적 표면장력 측정 결과에 의하면 LA와 LA3 비이온 계면활성제 모두, 공기와 수용액의 계면이 계면활성제 단분자에 의하여 비교적 짧은 시간 내에 포화되었으며, 1 wt% LA와 LA3 계면활성제 시스템들의 접촉각은 각각 27.8, $20.9^{\circ}$를 나타내었다. 비극성 오일 n-decane과 1 wt% 계면활성제 수용액 사이의 시간에 따른 계면장력은 시간에 따라 감소하며, LA와 LA3 시스템 모두 2~3 min 이내의 짧은 시간에 평형에 도달하였고, 평형에서의 계면장력 값은 각각 0.1524, 0.1716 mN/n을 나타내었다. $25^{\circ}C$에서의 계면활성제 수용액은 두 시스템 모두 비교적 안정한 상태를 유지하였고, LA 비이온 계면활성제가 LA3 비이온 계면활성제에 비하여 거품 안정성이 큼을 확인하였으며, 이러한 거품 안정성 측정 결과는 표면장력 측정 결과와도 일치하였다. 계면활성제, 물, 비극성 탄화수소 오일로 이루어진 3성분 시스템에 대하여 $25{\sim}60^{\circ}C$의 온도에서 상평형 실험을 수행한 결과, lower phase 마이크로에멀젼 혹은 oil in water (O/W) 마이크로에멀젼이 excess oil 상과 평형을 이루는 2상 영역만이 관찰되었을 뿐, lamellar liquid crystalline phase 혹은 middle-phase 마이크로에멀젼을 포함한 3상 영역은 나타나지 않았다.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. W. G. Cutler and E. Kissa, Detergency : Theory and Technology, Surfactant Science Series, 20, 1, Marcel Dekker, New York (1987).
  2. A. M. Schwartz, The Physical Chemistry of Detergency ed. E. Matijevic, Surface Colloid Sci., 195, Wiley, New York (1972).
  3. C. A. Miller and P. Neogi, Interfacial Phenomena : Equilibrium and Dynamic Effects, Surfactant Science Serie, 17, 150, Marcel Dekker, New York, (1985).
  4. J. C. Lim, J. Korean Ind. Eng. Chem., 6, 610 (1995).
  5. J. C. Lim, J. Korean Ind. Eng. Chem., 8, 473 (1997).
  6. S. K. Lee, J. W. Han, B. H. Kim, P. G. Shin, S. K. Park, and J. C. Lim, J. Korean Ind. Eng. Chem., 10, 537 (1999). https://doi.org/10.1007/s100510050883
  7. H. K. Ko, B. D. Park, and J. C. Lim, J. Korean Ind. Eng. Chem., 11, 679 (2000).
  8. J. G. Lee, S. S. Bae, I. S. Cho, S. J. Park, B. D. Park, S. K. Park, and J. C. Lim, J. Korean Ind. Eng. Chem., 16, 664 (2005).
  9. J. G. Lee, S. S. Bae, I. S. Cho, S. J. Park, B. D. Park, S. K. Park, and J. C. Lim, J. Korean Ind. Eng. Chem., 16, 677 (2005).
  10. J. C. Lim, J. Korean Ind. Eng. Chem., 16, 778 (2005).
  11. S. Lee, B. J. Kim, J. G. Lee, and J. C. Lim, J. Korean Ind. Eng. Chem., 16, 778 (2011).
  12. M. Franska, R. Franski, A. Szymanski, and Z. Lukaszewski, Water Res., 37, 1005 (2003). https://doi.org/10.1016/S0043-1354(02)00444-X
  13. P. F. X. Corvini, A. Schaffer, and D. Schlosser, App. Microbiol Biotechnol., 72, 223 (2006). https://doi.org/10.1007/s00253-006-0476-5
  14. C. A. Staples, C. G. Naylor, J. B. Williams, and W. E. Gledhill, Environ. Toxicol. Chem., 20, 2450 (2001). https://doi.org/10.1002/etc.5620201108
  15. A. Soares, B. Guieysse, B. Jefferson, E. Cartmell, and J. N. Lester, Environ. Int., 34, 1033 (2008) https://doi.org/10.1016/j.envint.2008.01.004
  16. M. S. Holt, E. H. McKerrell, J. Perry, and R. J. Watkinson, J. Chromatogr., 362, 419 (1986). https://doi.org/10.1016/S0021-9673(01)86995-8
  17. M. Antonio and G. Walter, Anal. Chem., 59, 1709 (1987). https://doi.org/10.1021/ac00140a027
  18. S. H. Im, H. S. Bak, S. H. Noh, S. K. Han, M. J. Rang, and Y. K. Yoon, J. Korean Ind. Eng. Chem., 14, 371 (2003).
  19. M. J. Rang, J. D. Kim, S. G. Oh, B. M. Lee, J. C. Lim, J. D. Hong, H. H. Kang, and J. G. Lee, The Recent Research Trends in Colloid and Surface Chemistry, 45, KOSFT, Seoul (2007).
  20. M. J. Bae and J. C. Lim, J. Korean Ind. Eng. Chem., 20, 15 (2009).
  21. M. J. Bae and J. C. Lim, Korean Chem. Eng. Res., 47, 24 (2009).
  22. M. J. Bae and J. C. Lim, Korean Chem. Eng. Res., 47, 46 (2009).
  23. M. J. Bae and J. C. Lim, J. Korean Ind. Eng. Chem., 20, 473 (2009).
  24. D. J. Mitchell, G. J. T. Tiddy, L. Waring, T. Bostock, and M. P. Macdonald, J. Chem. Soc. Faraday Trans., 79, 975 (1983). https://doi.org/10.1039/f19837900975
  25. O. Ghosh and C. A. Miller, J. Phys. Chem., 91, 4528 (1987). https://doi.org/10.1021/j100301a022