DOI QR코드

DOI QR Code

Synthesis of AlPO4-type Mesoporous Materials Using Alum Sludge

Alum 슬러지를 이용한 AlPO4-계 다공성 물질의 합성

  • Kang, Kwang Cheol (Green Home Energy Technology Research Center, Kongju National University) ;
  • Kim, Young Ho (Department of Chemistry, Kongju National University) ;
  • Kim, Jin-man (Department of Architecture, Kongju National University) ;
  • Lee, Choul Ho (Department of Chemical Engineering, Kongju National University) ;
  • Rhee, Seog Woo (Green Home Energy Technology Research Center, Kongju National University)
  • 강광철 (공주대학교 그린홈에너지기술연구소) ;
  • 김용호 (공주대학교 화학과) ;
  • 김진만 (공주대학교 건축학부) ;
  • 이철호 (공주대학교 화학공학부) ;
  • 이석우 (공주대학교 그린홈에너지기술연구소)
  • Received : 2010.12.06
  • Accepted : 2011.01.17
  • Published : 2011.04.10

Abstract

In this study, the formation of $AlPO_4$-type porous materials from alum sludge was investigated. The materials were synthesized by the reaction of aluminum hydroxide and phosphoric acid with an organic template. Cationic surfactant, natural humic acid, and amino acids were used for the organic template. The residual organic templates were removed by calcination at $600^{\circ}C$ in the air. Powder X-ray diffraction patterns showed the charicteristic patterns of the $AlPO_4$-type porous materials. The morphology of the material was examined using a scanning electron microscopy. The coordination environment of $Al^{3+}$ ion was investigated by $^{27}Al$ MAS NMR technique. Both tetrahedrally and octahedrally coordinated$Al^{3+}$ ions were found in the as-synthesized samples while all $Al^{3+}$ ions were tetrahedrally coordinated in the calcined products. The development of mesopore in the solid material was confirmed by the measurement of BET specific surface area. Finally, they were used for removal of toxic formaldehyde from the air and the formaldehyde molecules were adsorbed on the surface of pores. In conclusion, $AlPO_4$-type porous materials from alum sludge might be applicable in the removal of toxic volatile organic compounds from the air.

본 연구에서는 정수장의 alum 슬러지로부터 $AlPO_4$-계 다공성 물질의 합성과정을 규명하고자 가정용 세제, 휴믹산, 아미노산 등과 같은 유기물질을 틀로 사용하여 $Al(OH)_3$과 인산으로부터 $AlPO_4$-계 다공성 물질을 합성하였으며, $600^{\circ}C$의 공기 중에서 소성을 통하여 틀로 사용한 유기물질을 제거하였다. X-선 회절 분석 결과 합성된 물질은 $AlPO_4$-계 다공성 물질의 특징적인 패턴을 나타내었으며, 물질의 형태적인 특성은 주사전자현미경을 이용하여 관찰하였다. $^{27}Al$ MAS NMR 분석을 통하여 $Al^{3+}$ 이온 주변의 화학적 배위환경의 변화를 관찰하였다. 소성 전 물질에는 4배위와 6배위된 $Al^{3+}$ 이온이 함께 존재하지만, 소성 후 물질에서 $Al^{3+}$ 이온은 모두 4배위 환경에 존재하였다. 합성된 고체 내부에 형성된 기공은 BET 비표면적 측정으로 확인하였다. 최종적으로 합성된 물질의 응용으로 공기 중 유해 포름알데히드 제거 실험을 실시하였으며, 포름알데히드 분자가 물질에 존재하는 기공 표면에 흡착됨을 확인하였다. 결론적으로, alum 슬러지로부터 얻어진 $AlPO_4$-계 다공성 재료를 유해 기체의 흡착 및 제거에 활용할 수 있는 가능성을 제시하였다.

Keywords

Acknowledgement

Supported by : 한국연구재단, 중소기업청

References

  1. J. Cejka and S. Mintova, Catal. Rev., 49, 457 (2007). https://doi.org/10.1080/01614940701583240
  2. B. K. Choi, D. S. So, S. K. Kang, S. E. Park, J. S. Chang, and J. S. Hwang, Prospect. Ind. Chem., 6, 37 (2003).
  3. Y. Ma, W. Tong, H. Zhou, and S. L. Suib, Micropor. Mesopor. Mat., 37, 243 (2000). https://doi.org/10.1016/S1387-1811(99)00199-7
  4. X. S. Zhao, G. Q. Lu, and G. J. Millar, Ind. Eng. Chem. Res., 35, 2075 (1996). https://doi.org/10.1021/ie950702a
  5. S. T. Wilson, B. M. Lok, C. A. Messina, T. R. Cannan, and E. M. Flanigen, J. Am. Chem. Soc., 104, 1146 (1982). https://doi.org/10.1021/ja00368a062
  6. Y. Wan, C. D. Williams, J. J. Cox, and C. V. A. Duke, Green Chem., 1, 169 (1999). https://doi.org/10.1039/a901382b
  7. M. E. Davis and R. F. Lobo, Chem. Mater., 4, 756 (1992). https://doi.org/10.1021/cm00022a005
  8. I. Braun, G. Schulz-Ekloff, D. Wöhrle, and W. Lautenschlager, Micropor. Mesopor. Mat., 23, 79 (1998). https://doi.org/10.1016/S1387-1811(98)00180-2
  9. J. H. Park, S. H. Park, and S. H. Jhung, J. Kor. Chem. Soc., 53, 553 (2009). https://doi.org/10.5012/jkcs.2009.53.5.553
  10. B. V. S. Kumar, K. Byrappa, K. M. L. Rai, M. K. Devaraju, M. S. V. Kumar, and C. Ranganathaiah, Ind. J. Chem., 46A, 86 (2007).
  11. C. S. Cundy and P. A. Cox, Chem. Rev., 103, 663 (2003). https://doi.org/10.1021/cr020060i
  12. J. M. Kim, Y. Sakamoto, Y. K. Hwang, Y.-U. Kwon, O. Terasaki, S.-E. Park, and G. D. Stucky, J. Phys. Chem. B, 106, 2552 (2002). https://doi.org/10.1021/jp014280w
  13. Seoul Development Institute, Study on the treatment and disposal of alum sludge from drinking water treatment plants, 7, Seoul (1997).
  14. J.-T. Jeong, B.-H. Lee, and K.-H. Lee, J. Kor. Soc. Civil Eng., 20, 583 (2000).
  15. Ministry of Environment, Republic of Korea, 2008 Annual report for production and treatment of waste, 61, Seoul (2009).
  16. Ministry of Land, Transport and Maritime Affairs, Republic of Korea, Development of technology for small- and midium-scale package system of alum sludge, 54, Seoul (2004).
  17. F. Fan, Z. Feng, K. Sun, M. Guo, Q. Guo, Y. Song, W. Li, and C. Li, Angew. Chem. Int. Ed., 48, 8743 (2009). https://doi.org/10.1002/anie.200903601
  18. P. Feng, Y. Xia, J. Feng, X. Bu, and G. D. Stucky, Chem. Commun., 949 (1997).
  19. C. Schott-Darie, J. Patarin, Y. LeGoff, H. Kessler, and E. Benazzi, Microporous Mater., 3, 123 (1994). https://doi.org/10.1016/0927-6513(94)00014-X
  20. A. Tuel, S. Caldarelli, A. Meden, L. B. McCusker, C. Baerlocher, A. Ristic, N. Rajic, G. Mali, and V. Kaucic, J. Phys. Chem. B, 104, 5697 (2000). https://doi.org/10.1021/jp000455a
  21. L. B. Alemany, H. K. C. Timken, and I. D. Johnson, J. Magn. Reson., 80, 427 (1988).