DOI QR코드

DOI QR Code

Optimal Sensor Allocation for Health Monitoring of Roller-Coaster Structure

롤러코스터의 모니터링을 위한 최적 센서 구성

  • 허광희 (건양대학교 건설시스템공학과) ;
  • 전승곤 (충남대학교 토목공학과) ;
  • 박인준 (한서대학교 토목공학과)
  • Received : 2011.02.18
  • Accepted : 2011.06.13
  • Published : 2011.07.30

Abstract

This research aims at the optimal constitution of sensors required to identify the structural shortcoming of roller-coaster. In this research we analyzed the dynamic characteristics of roller-coaster by three dimensional FE modelling, decided on the appropriate location and number of sensors through optimal transducer theory, abstracted the mathematical value of modal features before and after damage on the basis of optimally placed and numbered sensors. and then presented it as a primary information about the basic structure which would be applied to damage estimation. As a target structure, the roller-coater at Seoul Children's Grand Park was chosen and built as a model reduced by one twentieth in size. In order to consider the Kinetics features particular to the roller-coaster structure, we made an exact three-dimensional FE modelling for the model structure by means of Spline function. As for the proper location and number of sensors, it was done by applying EIM and EOT. We also estimated the damage from the combination of strength, flexibility, and model corelation after abstracting the value of modal features. Finally the optimal transducer theory presented here in this research was proved to be valid, and the structural damage was well identified through changes in strength and flexibility. As a result, we were able to present the optimal constitution of sensors needed for the analysis of dynamic characteristics and the development of techniques in dynamic characteristics, which would ultimately contribute to the development of health monitoring for roller-coaster.

본 연구는 롤러코스터 구조물의 구조적인 결함을 검출하기 위해서 요구되는 최적의 센서를 구성하기 위한 연구이다. 특수한 목적과 구조적인 형태의 롤러코스터를 3차원 FE 모델링을 통해 구조적 거동특성을 분석하고, 최적계측/센서 이론을 통해 합리적인 센서 위치 및 개수를 구성하였으며, 구성된 최적 센서 위치 및 개수를 바탕으로 손상 전 후에 따른 수치적인 모달 특성값을 추출해 손상평가에 활용될 기본 구조물에 대한 기초자료를 제공하였다. 본 연구의 대상구조물로 서울 어린이대공원에 위치한 롤러코스터 구조물을 선정하였고, 1/20 크기로 축소한 모형 구조물을 제작 활용하였다. 또한, 롤로코스트의 공간적인 구조의 특성으로 운동학(Kinetics)적 거둥에 따른 운동역학(Kinematics)적인 특성이 포함되도록 Spline 함수를 이용해 대상 모형 구조물을 정확히 3차원 FE 모델을 구성 후, 가이언 소거법에 근거한 모달 특성값을 추출하였고, 유효독립법(EIM) 및 최적운동에너지법(EOT) 이론을 바탕으로 최적계측/센서 위치 및 개수를 구성하였으며, 손상 전 후에 따른 모달 특성값을 추출해 크게 강성도, 유연도, 모드상관도의 관계로부터 손상(결함)을 평가하였다. 최종적으로, 본 논문에서 구성된 최적 계측/센서 이론이 타당함을 확인하였고, 강성도 및 유연도 변화를 통해 만족할 수준으로 손상이 규명되었다. 이 결과 롤러코스터 구조물의 건전도 모니터링에 필요한 거동특성 분석 및 결함검출기술 개발에 관한 최적 센서의 구성을 제시 하였다.

Keywords

References

  1. 건설교통부, "도로교 표준시방서", 대한토목학회, 1996.
  2. 건설도서편집국, "케이블 교량의 계획과 설계", 도서출판 건설 도서, 1983.
  3. 조선일보, 제 22838호, Korea, 1994.
  4. 조효남, "대형교량의 유지관리를 위한 계측, 모니터링, 통제시스템개발", 한국과학재단, HOSEF 과제번호 : 961-1203-011-2, 1998.
  5. 현대건설(주) 기술연구소, "남해대교 계측보고서-초기치 설정을 위한 재하실험", 1997.
  6. Alampalli. S. and Fu, G., "Remote bridge monitoring system for bridge condition", Engineering Research and Development Bureau, New York State Department of Transportation, Report 70, 1994.
  7. Ballard, C. M. and Chen, S. S., "Automated remote monitoring of structural behavior via the internet", SPIE 3rd Annu. Smart Structures and Materials Conf. San Diego, 1996.
  8. Bath, K. J., "Finite Element Procedures", Prentice Hall, 1996.
  9. Chang, S. P. and Kim, S., "Online structural monitoring of a cable-stayed bridge", SPIE 3rd Annu. Smart Structures and Materials Conf. San Diego, CA, 1996.
  10. Doebling, S. W., Farrar, C. R., Prome, M. B. and Shevitz, D. W., "Damage identification and health monitoring of structural and mechanical systems from changes in their vibration characteristics: a literature review", Los Alamos National Laboratory, Report LA-13070-MS, 1996.
  11. Ewins, D. J., "Modal Testing : Theory, Practice and Application", R.S.P, 2000.
  12. Heo, G., Wang, M. L. and Satpathi, D., "Optimal Transducer Placement for Health Monitoring of Long Span Bridge", Soil Dynamics and Earthquake Engineering(16), 1997, pp.495-502.
  13. Heo, Gwanghee., "An Automated Health Monitoring System for Large Civil Structural System", Ph.D. Dissertation, University of New Mexico, 1997.
  14. Kammer, D. C., "Effect of Model Error on Sensor Placement for On-Orbit Modal Identification of Large Space Structures", Journal of Guidance, Control and Dynamics, Vol. 15, No. 2, 1992.
  15. Pines, D. J. and Lovell, P. A., "Conceptual Framework of Remote Wireless Health Monitoring System for Large Civil Structures", Smart Material and Structures, Vol. 7, No. 5, 1998, pp.627-633. https://doi.org/10.1088/0964-1726/7/5/007
  16. Shah, P. C. and Udwadia, F. E., "A Methodology for Optimal Sensor Locations for Identification of Dynamic Systems", Transactions of the ASME, Vol. 45, March 1987, pp.188-196.
  17. Udwadia, F. E. and Garba, J. A., "Optimal Sensor Locations for Structural Identification", JPL Proceeding of the Workshop on Identification and Control of Flexible Space Structures, April 1985, pp.247-261.
  18. Udwadia, F. E., "Methodology for Optimum Sensor Locations for Parameter Identification in Dynamic Systems", J. of Eng. Mech., Vol. 120, No. 2, February 1994, pp.368-387. https://doi.org/10.1061/(ASCE)0733-9399(1994)120:2(368)
  19. Wang, M. L., Heo, G. and Satpathi, D., "Dynamic Characterization of a long Span Bridge : A Finite Element Based Approach", Soil Dynamics and Earthquake Engineering(16), 1997, pp.503-512.
  20. Wang, M. L., Heo, G. and Satpathi, D., "A Health Monitoring system for large Structural Systems", Smart Material and Structures, Vol. 7, No. 5, 1998, pp.627-633. https://doi.org/10.1088/0964-1726/7/5/007
  21. Wilson, J. C. and Gravelle, W., "Modeling of a Cable-Stayed Bridge for Dynamic Analysis", Earthquake Engineering and Structural Dynamics, Vol. 20, 1991, pp.707-721. https://doi.org/10.1002/eqe.4290200802