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Topological Derivative for Fast Imaging of Two-Dimensional Thin 
Dielectric Inclusions in The Wave Propagation Environment

Won-Kwang Park

Abstract

In this paper, we consider the topological derivative concept for developing a fast imaging algorithm of thin 
inclusions with dielectric contrast with respect to an embedding homogeneous domain with a smooth boundary. The 
topological derivative is evaluated by applying asymptotic expansion formulas in the presence of small, perfectly 
conducting cracks. Through the careful derivation, we can design a one-iteration imaging algorithm by solving an 
adjoint problem. Numerical experiments verify that this algorithm is fast, effective, and stable.
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Ⅰ. Introduction

The inverse scattering problem of imaging the un-
known shape of thin penetrable inclusions or of per-
fectly conducting cracks from measured scattered data is 
a difficult problem due to ill-posedness and inherent 
non-linearity. Nevertheless, it is also an interesting one 
that arises in a number of fields, such as physics, medi-
cal science, and material engineering.

Over a number of decades, various imaging algo-
rithms have been developed, many of them based on the 
Newton-type iteration schemes [1～4]. Nevertheless, the 
guarantee of a successful imaging performance requires 
a good initial guess that is close to the unknown target. 
Without this, issue such as non-convergence, the occur-
rence of several minima, and large computational costs 
may arise. These schemes require suitable regularization 
terms that depend on the problem at hand.

For this reason, various non-iterative algorithms are 
also developed as alternatives; for example, linear sam-
pling [5, 6], Multiple Signal Classification (MUSIC) [7, 
8], and multi-frequency methods [9, 10]. These appear 
to be fast and robust, and easily extend to the case of 
several disconnected inclusions in the same domain. Al-
though the results obtained do not guarantee the true 
shape of inclusions, they could be good initial guesses 
for Newton-type algorithms. Unfortunately, the success-
ful application of these algorithms requires a large num-
ber of incident fields with various directions and corre-
sponding scattered fields are needed. Therefore, to be 
effective, the non-iterative imaging algorithm that is de-
veloped requires a small number of these fields.

In this paper, we develop an alternative non-iterative 
algorithm that is based on the topological derivative con-
cept for imaging of thin dielectric inclusion from the 
measured scattered field at a boundary induced from an 
incident field. For this purpose, the asymptotic expan-
sion formula due to the presence of a small (perfectly con-
ducting) crack is applied to express the topological deri-
vative.

This paper organized as follows. In section 2, the two- 
dimensional direct scattering problem is sketched and 
the asymptotic formula due to the small crack is intro-
duced. Discussion of the topological derivative concept 
is considered in section 3. In section 4, numerical simu-
lations for demonstrating the performance of the algori-
thm are illustrated. A short conclusion appears in section 
5. In the appendix, a rigorous proof of theorem 1 is ex-
plained.

Ⅱ. Direct Scattering Problems & Asymptotic Formula

We consider the two-dimensional electromagnetic sca-
ttering from a thin, curve-like inclusion within a homo-
geneous domain . Assume that this domain contains a 
thin inclusion, denoted as  , which is localized in the 
neighborhood of a curve. That is,

  ∈ ∈

where the  is a simple, smooth curve completely 
embedded in  ,   is the unit normal to  at , and 
 is a strictly positive constant that specifies the thickness 
of the inclusion (small with respect to the wavelength ). 
Throughout this paper, we denote  and   are two- 
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dimensional vectors.
Assume that all materials are fully characterized by 

their dielectric permittivity at a given frequency . Let 
 and  denote the permittivity of the domain   and 
thin inclusion  , respectively. Then, one can define the 
piecewise constant dielectric permittivity as:

   for ∈
 for ∈∖

For the sake of simplicity, throughout this paper, we 
set ε0=1.

To derive the topological derivative, we will apply 
asymptotic expansion formulas that take into account the 
existence of a small crack. For this purpose, we assume 
that  contains a small, perfectly conducting crack  
   ≤ ≤ , where  is a small, positive 
constant that specifies the length of .

Let   and   be the time-harmonic total field 
that satisfies the Helmholtz equation in the presence of 
small crack  :










∆   ∈ ∖
   on 




   on  (1)

and









∆   ∈ ∖
   on 
   on  (2)

and let   and  be the solution of equations (1) 
and (2) without  , respectively. Then, the asymptotic 
expansion formula in the presence of the small crack 
can be written as [11]:

 ln










 ln







for ∈, where   and   is Neumann and 
Dirichlet function for  , the solution to:











∆  in 




  on 

and

∆  in 
   on 

respectively.

Ⅲ. Topological Derivative Concept

The topological derivative measures the influence of 

creating a small crack (or small ball, inclusions, etc.) at 
a point inside the domain . Mathematically, the topo-
logical derivative   of a function  at ∈ 
can be defined by

∖  

where the function → as →[12]～[16].
Suppose that  contains a small crack ,   de-

notes the boundary condition on  and   is the 
solution to the problem in the presence of a thin in-
clusion:











∆   in 




   on 

(3)

With this, construct   and   as the solutions 
to the following problems in the absence of inclusion:











∆   in 




   on 

(4)

and

∆   in 

   on  (5)

respectively. Let us define following discrepancy func-
tion:

  









 


Then, we can obtain the following result:

Theorem 1. The topological derivative   of the 
discrepancy function   satisfies

∖  

where

 ln


and

 Re   

Here, adjoint states   and   are defined as 
the solution to











∆   in 




   on 

(6)
and
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





∆   in 

 


 on  (7)
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respectively.

Proof. See Appendix.

The points where the topological derivative is the 
most negative value are expected to be approximately on 
the supporting curve  so that this quickly yields an out-
line of shape of the unknown thin dielectric inclusion .

Remark 1. Instead of creating a small, perfectly con-
ducting crack in the domain , one can also create a 
small ball of radius . Derivation of the topological de-
rivative and corresponding numerical result can be 
found in the recent work [16].

Ⅳ. Numerical Simulations

We now present some results of numerical simula-
tions using the topological derivative   to image 
unknown thin dielectric inclusions in . For this pur-
pose, we choose the homogeneous domain  as a 
two-dimensional unit circle centered at the origin and 
two thin inclusions  for illustration:

   ∈ ∈

with supporting curves  represented as:

  ∈

  ∈

and we denote  be the permittivity of . Since we 
choose ε0=1, the applied frequency reads as  , 
at wavelength  , i.e., if we consider the plane wave il-
lumination, the boundary conditions in equations (1), (3) 
and (4) can be read as (see Fig. 1):

 


  ⋅exp⋅ ∈

Notice that throughout this paper, the wavelength is 
chosen as 0.5, i.e.,  0.5. 

Fig. 1. Test configuration.

Fig. 2.   for  with 1 direction.

Fig. 3.   for  with 2 directions.

Remark 2. For a successful application of the imaging 
algorithm, one must apply adequate numbers of different 
incident directions  . For example, Fig. 2 shows the 
map of   with one incident direction =(1, 0). In 
this result, it is very difficult to recognize the shape of 
 . However, when we apply two different incident di-
rections =(1, 0) and =(—1, 0), we obtain a more ac-
ceptable result, as seen in Fig. 3. Based on these experi-
ments, we apply 8 different number of different incident 
directions to obtain a good result, as follows:

  cos


 sin
    ⋯

For the first example, let us consider the imaging of 
 with ε1=5 Fig. 4 is the map of   for all  
∈ . In this example, one can easily notice that the 
point where the topological derivative is the most nega-
tive value appears in the neighborhood of .

Next, Fig. 5 shows the map of   when the thin 
inclusion is  with ε2=5 Although, part of  is not 
apparent, the result obtained is close to the .

Mathematical configurations, derivation of topological 
derivative, and numerical analysis could be extended to 
the case of multiple thin inclusions, say,  ∪. In 
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Fig. 6, a good imaging result appears when permittivi-
ties of  and  are ε1=ε2=5. However, in Fig. 7, one 
can recognize that when one inclusion (say , ε2 =5) 
has a much smaller value of permittivity than another 
(say , ε1=10), the first inclusion appeared with much 
smaller magnitude than the second.

Finally, in order to show the robustness of the pro-
posed algorithm, we added a white Gaussian random 
noise with a 20 dB signal-to-noise ratio (SNR) to the 
measured boundary data   in equation (3). Fig. 8 
and Fig. 9 illustrate the results when we add Gaussian 
random noise for  and , respectively with ε1=10 
and ε2=5. By comparing with Fig. 5 and Fig. 7, we 
observe that proposed method is robust even in the pre-
sence of random noise.

Ⅴ. Concluding Remarks

A non-iterative algorithm based on the topological de-
rivative concept has been investigated for imaging thin 
dielectric curve-like inclusions embedded in a homoge-
neous domain  . Results show that this approach is 
fast, effective, and stable. 

Fig. 4.   for  with 8 directions.

Fig. 5.   for  with 8 directions.

Fig. 6.   for  with same permittivities.

Fig. 7.   for  with different permittivities.

Fig. 8.   for  with random noise.

In this paper and in recent work [16], we have only 
considered the dielectric contrast case. However, the an-
alysis could be extended to a purely magnetic contrast 
between inclusions and embedding domain case.

Recently, we derived the topological derivative for a 
purely magnetic contrast case. If we define the piecewise 
constant magnetic permeability as:

   for ∈
 for ∈∖
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Fig. 9.   for  with random noise.

then the topological derivative   is of the follow-
ing form:

Re ∇⋅∇∇⋅∇ 

when we create a small ball of radius . A rigorous de-
rivation of topological derivative and corresponding nu-
merical simulations will be presented in forthcoming 
work.

Appendix: Proof of Theorem 1

In order to derive the topological derivative, let us 
create a small, perfectly conducting crack  at a certain 
point   inside the domain  and denote   and   
satisfies equations (1) and (2), respectively.

By applying asymptotic expansion formulas, we can 
examine the relationship between ∖  and   as 
follows:

∖

 











 


 









 
























 

where

 



and

 

















Therefore, we can obtain the topological derivative 
  through the evaluation of   and  .

First, from the boundary condition of equation (6) and 
asymptotic expansion formula, we can compute

  

    






  

ln
 





 

Then, applying integration by parts yields:











∆





∇⋅
∇



∆ 





∆











  







 


Therefore, we can obtain:

 ln



 (8)

Next, from the boundary condition of equation (7) 
and asymptotic expansion formula, we can compute

  




















 












ln
 



 

 




Then, applying integration by parts yields:















∆




∇⋅
∇




 ∆
 




∆





∆













∆ 



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Therefore, 

 ln



 (9)

Finally, by taking real parts of sum of equations (8) 
and (9), we can obtain the desired result. This ends the 
proof.
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