DOI QR코드

DOI QR Code

Optical Properties of SiNx Thin Films Grown by PECVD at 200℃

200℃의 저온에서 PECVD 기법으로 성장한 SiNx 박막의 열처리에 따른 광학적 특성 변화 규명

  • Lee, Kyung-Su (University of Seoul, Department of Nano Science and Technology) ;
  • Kim, Eun-Kyeom (University of Seoul, Department of Nano Engineering) ;
  • Son, Dae-Ho (University of Seoul, Department of Nano Science and Technology) ;
  • Kim, Jeong-Ho (University of Seoul, Department of Nano Science and Technology) ;
  • Yim, Tae-Kyung (University of Seoul, Department of Nano Science and Technology) ;
  • An, Seung-Man (University of Seoul, Department of Nano Science and Technology) ;
  • Park, Kyoung-Wan (University of Seoul, Department of Nano Science and Technology)
  • 이경수 (서울시립대학교 나노과학기술학과) ;
  • 김은겸 (서울시립대학교 나노공학과) ;
  • 손대호 (서울시립대학교 나노과학기술학과) ;
  • 김정호 (서울시립대학교 나노과학기술학과) ;
  • 임태경 (서울시립대학교 나노과학기술학과) ;
  • 안승만 (서울시립대학교 나노과학기술학과) ;
  • 박경완 (서울시립대학교 나노과학기술학과)
  • Received : 2010.10.27
  • Accepted : 2010.11.10
  • Published : 2011.01.30

Abstract

We deposited $SiN_x$ thin films by using PECVD technique at $200^{\circ}C$ with various flow ratios of the $SiH_4/N_2$ gases. The photoluminescence measurements revealed that the maximum emission wavelength shifted to long wavelength as the ratio increased, however, positions of the several peak wavelengths, such as 1.9, 2.2, 2.4, and 3.1 eV, were independent on the ratio. Changes of the photoluminescence spectra were measured in the $N_{2}-$, $H_{2}-$, and $O_2$-annealed films. The luminescence intensities increased after the annealing process. In particular, the maximum emission wavelength shifted to short wavelength after $H_{2}-$ or $O_2$-annealing. But there were still several peaks on the spectra of all annealed films, several peak positions remained to be unchanged after the annealing. As for the light emission mechanism, we have considered the defect states of the Si- and N- dangling bonds in the $SiN_x$ energy gap, so that the energy transitions from/to the conduction/valence bands and the defect states in the gap were attributed to the light emission in the $SiN_x$ films. The experimental results point to the possibility of a Si-based light emission materials for flexible Si-based electro-optic devices.

$SiN_x$ 박막을 $200^{\circ}C$의 저온에서 $SiH_4$ 가스의 흐름 비율을 바꾸어 가며 PECVD 기법으로 성장하였다. 시료의 광 특성을 규명하기 위하여 상온 광 발광 스펙트럼을 측정하였다. 성장 시 $SiH_4$ 가스의 흐름 비율이 증가함에 따라 시료의 발광 최대치 파장이 장파장으로 이동하였으나, $SiH_4$ 가스의 흐름 비율과 무관하게 모든 시료에서 1.8, 1.9, 2.2, 2.4, 그리고 3.1 eV 에너지의 발광 현상을 관찰하였다. $N_2$, $H_2$, 그리고 $O_2$ 가스 분위기에서 후열처리를 거친 후, 발광 스펙트럼의 변화를 조사하였다. 열처리 후의 발광 세기는 증가하였고, 특히, $H_2$$O_2$가스 열처리로 인하여 발광 최대치 파장이 단파장으로 이동하였으나, 특정한 파장에서 발광효과는 여전히 존재하였다. 발광 메카니즘에 대하여, $SiN_x$ 박막의 에너지 갭 내에 Si와 N 원자의 비결합 결함에 의한 에너지 준위 모델을 설정하였고, 이 에너지 준위의 천이에 의한 발광으로 이해하였다. 그리고 저온에서 성장한 $SiN_x$ 박막의 발광 효과는 앞으로 구부러짐이 가능한 Si 계 광소자 개발 가능성을 보여주고 있다.

Keywords

References

  1. Light Emission in Silicon: From physics to Device, edited by D. J. Lockwook (Academic Press, SanDiego, 1998), Chapter 1.
  2. L. T. Canham, Nature 408, 411 (2000). https://doi.org/10.1038/35044156
  3. L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, and F. Priolo, Nature 408, 440 (2000). https://doi.org/10.1038/35044012
  4. J. Ruan, P. M. Fauchet, L. Dal Negro, M. Cazzanelli, and L. Pavesi, Appl. Phys. Lett. 83, 5479 (2003). https://doi.org/10.1063/1.1637720
  5. M. J. Chen, J. L. Yen, J. Y. Li, J. F. Chang, S. C. Tsai, and C. S. Tsai, Appl. Phys. Lett. 84, 2163 (2004). https://doi.org/10.1063/1.1687458
  6. K. S. Min, K. V. Shcheglov, C. M. Yang, and H. A. Atwater, Appl. Phys. Lett. 69, 2033 (1996). https://doi.org/10.1063/1.116870
  7. H. Z. Song and X. M. Bau, Phys. Rev. B 55, 6988 (1977).
  8. N. -M. Park, C. -J. Choi, T. -Y. Seong, and S. -J. Park, Phys. Rev. Lett. 86, 1355 (2001). https://doi.org/10.1103/PhysRevLett.86.1355
  9. B. -H. Kim, C. -H. Cho, T. -W. Kim, N. -M. Park, G. Y. Sung, and S. -J. Park, Appl. Phys. Lett. 86, 091908 (2005). https://doi.org/10.1063/1.1872211
  10. G. F. Grom, D. J. Lockwood, J. P. McCaffrey, P. M. Fauchet, B. White, J. Diener, D. Kovalev, F. Koch, and L. Tsybeskov, Nature 407, 358 (2000). https://doi.org/10.1038/35030062
  11. M. Zacharias, J. Heitmann, R. Scholz, and U. Kahler, Appl. Phys. Lett. 80, 661 (2002). https://doi.org/10.1063/1.1433906
  12. M. V. Wolkin, J. Jorne, and P. M. Fauchet, Phys. Rev. Lett. 82, 197 (1999). https://doi.org/10.1103/PhysRevLett.82.197
  13. Y. J. Park, T. K. Lee, C. H. Lee, and E. K. Kim, J. Korean Phys. Soc. 44, 700 (2004). https://doi.org/10.3938/jkps.44.700
  14. J. -S. Bae, S. -H. Choi, J. K. Han, and D. W Moon, J. Korean Phys. Soc. 43, 557 (2003).
  15. K. H. Park, Y. Kim, T. H. Chung, H. J. Bark, J. Y. Yi, W. C. Choi, and E. K. Kim, J. Korean Phys. Soc. 39, S283 (2001).
  16. M. -G. Kim, Z. Yun, J. Lyon, S. Cho, Y. J. Park, and E. K. Kim, J. Korean Phys. Soc. 38, 750 (2001).
  17. J. H. Kang, Y. D. Kim, K. M. Cha, H. J. Cheong, and Y. Kim, J. Korean Phys. Soc. 45, 1065 (2004).
  18. S. Lee, B. Y. Park, K. W. Park, C. H. Bae, S. M. Park, C. J. Choi, and S. J. Lee, J. Korean Phys. Soc. 51, S308 (2007). https://doi.org/10.3938/jkps.51.308
  19. C. Ko, J. Joo, M. Han, B. Y. Park, J. H. Sok, and K. Park, J. Korean Phys. Soc. 48, 1277 (2006).
  20. M. Wang, D. Li, Z. Yuan, D. Yang, and D. Que, Appl. Phys. Lett. 90, 131903 (2007). https://doi.org/10.1063/1.2717014
  21. S. Fujita, J. Electronchem. Soc. 132, 398 (1985). https://doi.org/10.1149/1.2113850
  22. W. L. Warren, P. M. Lenahan. and S. E. Carry, Phys. Rev. Lett. 65, 207 (1991).
  23. T. Shimizu, J. Non-Cryst. Solids 59, 117 (1985).
  24. C. -F. Lin, W. -T. Tseng, and M. S. Feng, J. Appl. Phys. 87, 2808 (2000). https://doi.org/10.1063/1.372260
  25. E. Holzenkampfer, F. -W. Richter, J. Stuke, and U. Voget-Grote, J. Non-Cryst. Solids 32, 327 (1979). https://doi.org/10.1016/0022-3093(79)90080-2
  26. K. -M. Lee, T. -H. Kim, J. -D. Hwang, S. H. Jang, K. Y. Jeong, M. S. Han, S. H. Won, J. H. Sok, K. W. Park, and W. -S. Hong, Scripta. Mater. 60, 703 (2009). https://doi.org/10.1016/j.scriptamat.2008.12.054
  27. A. Iqbal, W. B. Jackson, C. C. Tsai, and J. W. Allen, J. Appl. Phys. 61, 2947 (1987). https://doi.org/10.1063/1.337842
  28. P. A. Pundur, J. G. Shavalgin, and V. A. Gritsenko, Phys. Status Solidi. A 94, K107 (1986). https://doi.org/10.1002/pssa.2210940261
  29. J. Robertson, J. Appl. Phys. 54, 4490 (1983). https://doi.org/10.1063/1.332647
  30. J. Robertson and M. J. Powell, Appl. Phys. Lett. 44, 415 (1984). https://doi.org/10.1063/1.94794