DOI QR코드

DOI QR Code

Influence of particle packing on fracture properties of concrete

  • He, Huan (Faculty of Civil Engineering and Geosciences, Delft University of Technology) ;
  • Stroeven, Piet (Faculty of Civil Engineering and Geosciences, Delft University of Technology) ;
  • Stroeven, Martijn (Faculty of Civil Engineering and Geosciences, Delft University of Technology) ;
  • Sluys, Lambertus Johannes (Faculty of Civil Engineering and Geosciences, Delft University of Technology)
  • Received : 2010.10.14
  • Accepted : 2011.01.08
  • Published : 2011.12.25

Abstract

Particle packing on meso-level has a significant influence on workability of fresh concrete and also on the mechanical and durability properties of the matured material. It was demonstrated earlier that shape exerts but a marginal influence on the elastic properties of concrete provided being packed to the same density, which is not necessarily the case with different types of aggregate. Hence, elastic properties of concrete can be treated as approximately structure-insensitive parameters. However, fracture behaviour can be expected structure-sensitive. This is supported by the present study based on discrete element method (DEM) simulated three-phase concrete, namely aggregate, matrix and interfacial transition zones (ITZs). Fracture properties are assessed with the aid of a finite element method (FEM) based on the damage materials model. Effects on tensile strength due to grain shape and packing density are investigated. Shape differences are shown to have only modest influence. Significant effects are exerted by packing density and physical-mechanical properties of the phases, whereby the ITZ takes up a major position.

Keywords

References

  1. Akcaoglu, T., Tokyay, M. and Celik, T. (2004), "Effect of coarse aggregate size and matrix quality on ITZ and failure behavior of concrete under uniaxial compression", Cement Concrete Compos., 26(6), 633-638. https://doi.org/10.1016/S0958-9465(03)00092-1
  2. Almusallam, A.A., Beshr, H., Maslehuddin, M. and Al-Amoudi, O.S.B. (2004), "Effect of silica fume on the mechanical properties of low quality coarse aggregate concrete", Cement Concrete Compos., 26(7), 891-900. https://doi.org/10.1016/j.cemconcomp.2003.09.003
  3. Azevedo, N.M. and Lemos, J.V. (2005), "A generalized rigid particle contact model for fracture analysis", Int. J. Numer. Anal. Meth. Geomech., 29(3), 269-285. https://doi.org/10.1002/nag.414
  4. Azevedo, N.M. and Lemos, J.V. (2006a), "Hybrid discrete element/finite element method for fracture analysis", Comput. Meth. Appl. Mech. Eng., 195(33-36), 4579-4593. https://doi.org/10.1016/j.cma.2005.10.005
  5. Azevedo, N.M. and Lemos, J.V. (2006b), "Aggregate shape influence on the fracture behaviour of concrete", Struct. Eng. Mech., 24(4), 411-427. https://doi.org/10.12989/sem.2006.24.4.411
  6. Azevedo, N.M., de Lemos, J.V. and de Almeida, J.R. (2010), "A discrete particle model for reinforced concrete fracture analysis", Struct. Eng. Mech., 36(3), 343-361. https://doi.org/10.12989/sem.2010.36.3.343
  7. Bazant, Z.P., Tabbara, M.R., Kazemi, M.T. and Pijaudier-Cabot, G. (1990), "Random particle model for fracture of aggregate or fiber composites", J. Eng. Mech. - ASCE, 116(8), 1686-1705. https://doi.org/10.1061/(ASCE)0733-9399(1990)116:8(1686)
  8. Brekelmans, W.A.M. and Ayyapureddi, S. (1995), "Reduction of mesh sensitivity in continuum damage mechanics", Acta Mech., 110, 49-56. https://doi.org/10.1007/BF01215415
  9. Bui, D.D., Hu, J. and Stroeven, P. (2005), "Particle size effect on the strength of rice husk ash blended gapgraded Portland cement concrete", Cement Concrete Compos., 27(3), 357-366. https://doi.org/10.1016/j.cemconcomp.2004.05.002
  10. Carpinteri, A., Cornetti, P. and Puzzi, S. (2004), "A stereological analysis of aggregate grading and size effect on concrete tensile strength", Int. J. Fract., 128(1), 233-242. https://doi.org/10.1023/B:FRAC.0000040986.00333.86
  11. Chen, B. and Liu, J. (2004), "Effect of aggregate on the fracture behavior of high strength concrete", Constr. Build. Mater., 18(8), 585-590. https://doi.org/10.1016/j.conbuildmat.2004.04.013
  12. Du, C.B. and Sun, L.G. (2007), "Numerical simulation of aggregate shapes of two-dimensional concrete and its application", J. Aero. Eng., 20(3), 172-178. https://doi.org/10.1061/(ASCE)0893-1321(2007)20:3(172)
  13. Ferrara, L. and Di Prisco, M. (2001), "Mode I fracture behavior in concrete: nonlocal damage modelling", J. Eng. Mech. - ASCE, 127(7), 678-692. https://doi.org/10.1061/(ASCE)0733-9399(2001)127:7(678)
  14. Freudenthal, A.M. (1950), The inelastic behaviour of engineering materials and structures, Wiley, New York, USA.
  15. Goldman, A. and Bentur, A. (1993), "The influence of microfillers on enhancement of concrete strength", Cement Concrete Res., 23(4), 962-972. https://doi.org/10.1016/0008-8846(93)90050-J
  16. He, H. (2010), "Computational modelling of particle packing in concrete", PhD Thesis, Delft University of Technology, Delft.
  17. He, H., Guo, Z., Stroeven, P., Stroeven, M. and Sluys, L.J. (2009), "Influence of particle packing on elastic properties of concrete", Computational Technologies in Concrete Structures (Choi, C.K., Meyer, C. and Bicanic, N. (eds)), Techno-Press, Daejeon, 1177-1198.
  18. Herrmann, H.J., Hansen, A. and Roux, S. (1989), "Fracture of disordered, elastic lattices in two dimensions", Phys. Rev. B, 39(1), 637-648. https://doi.org/10.1103/PhysRevB.39.637
  19. Hu, J. and Stroeven, P. (2004), "Properties of interfacial transition zone in model concrete", Interface. Sci., 12, 389-397. https://doi.org/10.1023/B:INTS.0000042337.39900.fb
  20. Jirásek, M. and Patzák, B. (2002), "Consistent tangent stiffness for nonlocal damage models", Comput. Struct., 80(14-15), 1279-1293. https://doi.org/10.1016/S0045-7949(02)00078-0
  21. Jirasek, M. and Marfia, S. (2005), "Non-local damage model based on displacement averaging", Int. J. Numer. Meth. Eng., 63(1), 77-102. https://doi.org/10.1002/nme.1262
  22. Kwan, A.K.H., Wang, Z.M. and Chan, H.C. (1999), "Mesoscopic study of concrete II: nonlinear finite element analysis", Comput. Struct., 70, 545-556. https://doi.org/10.1016/S0045-7949(98)00178-3
  23. Leite, J.P.B., Slowik, V. and Mihashi, H. (2004), "Computer simulation of fracture processes of concrete using mesolevel models of lattice structures", Cement Concrete Res., 34(6), 1025-1033. https://doi.org/10.1016/j.cemconres.2003.11.011
  24. Li, C.Q., Zheng, J.J., Zhou, X.Z. and McCarthy, M.J. (2003), "A numerical method for the prediction of elastic modulus of concrete", Mag. Concrete Res., 55(6), 497-505. https://doi.org/10.1680/macr.2003.55.6.497
  25. Lilliu, G. (2007), "3D analysis of fracture processes in concrete", PhD Thesis, Delft University of Technology, Delft.
  26. Peerling, R.H.J. (1999), "Enhanced damage modeling for fracture and fatigue", PhD Thesis, Eindhoven University of Technology, Eindhoven.
  27. Radtke, F.K.F., Simone, A., Stroeven, M. and Sluys, L.J. (2008), "Multiscale framework to model fibre reinforced cementitious conmposite and study its microstructure", Proceedings of International RILEM Symposium on Concrete Modelling - ConMod '08 (Schlangen E. and de Schutter G. (eds)), RILEM, Bagneux, 551-558.
  28. Rocco, C.G. and Elices, M. (2008), "Effect of aggregate size on the fracture and mechanical properties of a simple concrete", Eng. Fract. Mech., 75(13), 3839-3851. https://doi.org/10.1016/j.engfracmech.2008.02.011
  29. Rocco, C.G. and Elices, M. (2009), "Effect of aggregate shape on the mechanical properties of a simple concrete", Eng. Fract. Mech., 76(2), 286-298. https://doi.org/10.1016/j.engfracmech.2008.10.010
  30. Schlangen, E. and Garboczi, E.J. (1997), "Fracture simulations of concrete using lattice models: computational aspects", Eng. Fract. Mech., 57(2-3), 319-332. https://doi.org/10.1016/S0013-7944(97)00010-6
  31. Scrivener, K.L. and Nemati, K.M. (1996), "The percolation of pore space in the cement paste/aggregate interfacial zone of concrete", Cement Concrete Res., 26(1), 35-40. https://doi.org/10.1016/0008-8846(95)00185-9
  32. Stock, A.F., Hannant, D.J. and Williams, R.I.T. (1979), "The effect of aggregate concentration upon the strength and modulus of elasticity of concrete", Mag. Concrete Res., 31, 225-234. https://doi.org/10.1680/macr.1979.31.109.225
  33. Stroeven, P. (1973), "Some aspects of the micromechanics of concrete", PhD Thesis, Delft University of Technology, Delft.
  34. Stroeven, P., Hu, J. and Stroeven, M. (2009), "On the usefulness of discrete element computer modeling of particle packing for material characterization in concrete technology", Comput. Concrete, 6(2), 133-153. https://doi.org/10.12989/cac.2009.6.2.133
  35. Tabsh, S.W. and Abdelfatah, A.S. (2009), "Influence of recycled concrete aggregates on strength properties of concrete", Constr. Build. Mater., 23(2), 1163-1167. https://doi.org/10.1016/j.conbuildmat.2008.06.007
  36. Tasdemir, M.A. and Karihaloo, B.L. (2001), "Effect of aggregate volume fraction on the fracture parameters of concrete: a meso-mechanical approach", Mag. Concrete Res., 53(6), 405-415. https://doi.org/10.1680/macr.2001.53.6.405
  37. Tschegg, E.K., Elser, M. and Kreuzer, H. (1995), "Mode I fracture behaviour of concrete under biaxial loading", J. Mater. Sci., 30(1), 235-242. https://doi.org/10.1007/BF00352155
  38. van Vliet, M.R.A. and van Mier, J.G.M. (1999), "Effect of strain gradients on the size effect of concrete in uniaxial tension", Int. J. Fract., 95(1-4), 195-219. https://doi.org/10.1023/A:1018652302261
  39. Vonk, R.A. (1992), "Softening of concrete loaded in compression", PhD Thesis, Delft University of Technology, Delft.
  40. Wells, G.N. and Sluys, L.J. (2001), "A new method for modelling cohesive cracks using finite elements", Int. J. Numer. Meth. Eng., 50(12), 2667-2682. https://doi.org/10.1002/nme.143
  41. Yan, D. and Lin, G. (2006), "Dynamic properties of concrete in direct tension", Cement Concrete Res., 36(7), 1371-1378. https://doi.org/10.1016/j.cemconres.2006.03.003
  42. Yasar, E., Erdog an, Y. and Kilic, A. (2004), "Effect of limestone aggregate type and water-cement ratio on concrete strength", Mater. Lett., 58, 772-777. https://doi.org/10.1016/j.matlet.2003.06.004
  43. Zheng, J. (2000), "Mesostructure of concrete", PhD Thesis, Delft University Press, Delft.
  44. Zhou, X.Q. and Hao, H. (2008), "Mesoscale modelling of concrete tensile failure mechanism at high strain rates", Comput. Struct., 86(21-22), 2013-2026. https://doi.org/10.1016/j.compstruc.2008.04.013

Cited by

  1. Filler to improve concurrent flowability and segregation performance of concrete vol.18, pp.2, 2017, https://doi.org/10.1080/13287982.2017.1333184
  2. A meso-scale approach to modeling thermal cracking of concrete induced by water-cooling pipes vol.15, pp.4, 2015, https://doi.org/10.12989/cac.2015.15.4.485
  3. An investigation of water magnetization and its influence on some concrete specificities like fluidity and compressive strength vol.13, pp.5, 2014, https://doi.org/10.12989/cac.2014.13.5.649
  4. Capabilities for property assessment on different levels of the micro-structure of DEM-simulated cementitious materials vol.88, 2015, https://doi.org/10.1016/j.conbuildmat.2015.04.012
  5. Modeling of unilateral effect in brittle materials by a mesoscopic scale approach vol.15, pp.5, 2015, https://doi.org/10.12989/cac.2015.15.5.735
  6. Modeling of Cohesive Fracture and Plasticity Processes in Composite Microstructures vol.142, pp.10, 2016, https://doi.org/10.1061/(ASCE)EM.1943-7889.0001123
  7. Simulating Tensile and Compressive Failure Process of Concrete with a User-defined Bonded-Particle Model vol.12, pp.1, 2018, https://doi.org/10.1186/s40069-018-0292-1
  8. RSA vs DEM in view of particle packing-related properties of cementitious materials vol.22, pp.1, 2018, https://doi.org/10.12989/cac.2018.22.1.083