DOI QR코드

DOI QR Code

A New Vibration Energy Harvester Using Magnetoelectric Transducer

  • Yang, Jin (Key Laboratory for Optoelectronic Technology & Systems of Ministry of Education, College of Optoelectronic Engineering, Chongqing University) ;
  • Wen, Yumei (Key Laboratory for Optoelectronic Technology & Systems of Ministry of Education, College of Optoelectronic Engineering, Chongqing University) ;
  • Li, Ping (Key Laboratory for Optoelectronic Technology & Systems of Ministry of Education, College of Optoelectronic Engineering, Chongqing University) ;
  • Dai, Xianzhi (Key Laboratory for Optoelectronic Technology & Systems of Ministry of Education, College of Optoelectronic Engineering, Chongqing University) ;
  • Li, Ming (Key Laboratory for Optoelectronic Technology & Systems of Ministry of Education, College of Optoelectronic Engineering, Chongqing University)
  • Received : 2011.02.25
  • Accepted : 2011.04.14
  • Published : 2011.06.30

Abstract

Magnetoelectric (ME) transducers were originally intended for magnetic field sensors but have recently been used in vibration energy harvesting. In this paper, a new broadband vibration energy harvester has been designed and fabricated to be efficiently applicable over a range of source frequencies, which consists of two cantilever beams, two magnetoelectric (ME) transducers and a magnetic circuit. The effects of the structure parameters, such as the non-linear magnetic forces of the ME transducers and the magnetic field distribution of the magnetic circuit, are analyzed for achieving the optimal vibration energy harvesting performances. A prototype is fabricated and tested, and the experimental results on the performances show that the harvester has bandwidths of 5.6 Hz, and a maximum power of 0.25 mW under an acceleration of 0.2 g (with g = $9.8\;ms^2$).

Keywords

References

  1. P. Glynne-Jones, S. P. Beeby, and N. M. White, IEE Proc. Measure. Technol. 148, 68 (2001). https://doi.org/10.1049/ip-smt:20010323
  2. R. Torah, P. Glynne-Jones, M. Tudor, T. O'Donnell, S. Roy, and S. Beeby, Meas. Sci. Technol. 19, 125202 (2008). https://doi.org/10.1088/0957-0233/19/12/125202
  3. N. H. Ching, H. Y. Wong, J. Li, H. W. Leong, and Z. Wen, Sens. Actuators: A 97-98, 685 (2002). https://doi.org/10.1016/S0924-4247(02)00033-X
  4. J. Huang, R. C. O'Handley, and D. Bono, Proc. SPIE 5050, 229 (2003). https://doi.org/10.1117/12.484257
  5. X. Z. Dai, Y. M. Wen, P. Li, J. Yang, and G. Y. Zhang, Sens. Actuators: A 156, 350 (2009). https://doi.org/10.1016/j.sna.2009.10.002
  6. T. Li, S. W. Or, and H. L. Chan, J. Magn. Magn. Mater. 304, e442 (2006). https://doi.org/10.1016/j.jmmm.2006.01.211
  7. E. S. Leland and P. K. Wright, Smart Mater. Struct. 15, 1413 (2006). https://doi.org/10.1088/0964-1726/15/5/030
  8. V. R. Challa, M. G. Prasad, Y. Shi, and F. T. Fisher, Smart Mater. Struct. 17, 015035 (2008). https://doi.org/10.1088/0964-1726/17/01/015035
  9. I. Sari, T. Balkan, and H. Kulah, Sens. Actuators: A 145-146, 405 (2008). https://doi.org/10.1016/j.sna.2007.11.021
  10. J. Q. Liu, H. B. Fang, Z. Y. Xu, X. H. Mao, X. C. Shen, D. Chen, H. Liao, and B. C. Cai. Microelectron. J. 39, 802 (2008). https://doi.org/10.1016/j.mejo.2007.12.017
  11. S. C. Stanton, C. C. McGehee, and B. P. Mann, Appl. Phys. Lett. 95, 174103 (2009). https://doi.org/10.1063/1.3253710
  12. X. Xing, J. Lou, G. M. Yang, O. Obi, C. Driscoll, and N. X. Sun, Appl. Phys. Lett. 95, 134103 (2009). https://doi.org/10.1063/1.3238319
  13. M. Vidyasagar, Nonlinear systems analysis, Prentice Hall, Englewood Cliffs, New Jersey (1993) pp. 33-127.
  14. L. X. Bian, Y. M. Wen, P. Li, Q. L. Gao, and X. X. Liu, J. Magnetics 14, 66 (2009). https://doi.org/10.4283/JMAG.2009.14.2.066

Cited by

  1. Frequency-tunable electromagnetic energy harvester using magneto-rheological elastomer vol.27, pp.7, 2016, https://doi.org/10.1177/1045389X15590274
  2. Constrained Design Optimization of Vibration Energy Harvesting Devices vol.136, pp.2, 2014, https://doi.org/10.1115/1.4025877