DOI QR코드

DOI QR Code

Development of chemical ionization method in a GC-TOF mass spectrometer for accurate mass and isotope ratio measurement

Accurate mass 및 isotope ratio 측정을 위한 GC-TOF 질량분석기에서의 화학적 이온화방법

  • 정주희 (한국기초과학지원연구원 서울센터 분석연구부) ;
  • 나윤철 (한국기초과학지원연구원 서울센터 분석연구부) ;
  • 황금숙 (한국기초과학지원연구원 서울센터 분석연구부) ;
  • 신정화 (한국기초과학지원연구원 서울센터 분석연구부) ;
  • 안윤경 (한국기초과학지원연구원 서울센터 분석연구부)
  • Received : 2010.12.31
  • Accepted : 2011.01.10
  • Published : 2011.02.25

Abstract

An accurate mass and isotope ratio were determined using a gas chromatography/time of flight mass spectrometer in CI positive mode for the identification of unknown metabolites. High mass tune was used to improve the ion intensity of $[M+H]^+$. Chromatographic resolution and dynamic range enhancement were performed to obtain more reliable accurate masses and correct isotope abundance ratios. Average absolute errors of mass and isotope ratios for 24 reference metabolite -TMS (trimethylsilyl) derivatives were 6.8 ppm, 1.5% of (M+1/M ratio) and 1.7% of (M+2/M ratio), respectively. The correct formulas of twenty one compound were retrieved within top-2 hit from the heuristic algorithm for elemental composition using each accurate mass and isotope abundance ratio.

본 연구에서는 미지 대사물질 동정을 위해 GC-TOF/MS의 양이온 화학적 이온화 방법(positive chemical ionization, $CI^+$)을 이용, 정확한 질량 값(accurate mass)과 동위원소 비(isotope ratio) 측정을 위한최적 조건을 확립하였다. 분자이온 $[M+H]^+$ 세기를 증가시킬 수 있는 high mass tune 방법이 사용되었으며, 화합물들의 분리 및 감도에 따른 검출조건이 고려되어 졌다. 24종의 trimethylsilyl (TMS)기로 유도체화 된 표준 대사물질들을 분석한 결과 $[M+H]^+$의 경우 이론 값 과의 절대평균오차는 6.8 ppm이였으며, 동위원소 비(M+1/M, M+2/M)의 경우는 각각 1.5%와 1.7%였다. 얻어진 질량 값과 동위원소 비를 원소조성 알고리즘에 적용한 결과 21개의 화합물의 구조식이 2순위 내에서 일치하였다.

Keywords

References

  1. G. V. Silas, S. Mas, M. Kesson, J. Smedsgaard and J. Nielsen, Mass Spectrometry Reviews, 24, 613-646(2005). https://doi.org/10.1002/mas.20032
  2. http://www.nist.gov/srd/nist1a.cfm
  3. O. Fiehn, J. Kopka, P. Drmann, T. Altmann, R. N. Trethewey and L. Willmitzer, Nat. Biotechnol. 18, 1157-1161(2000). https://doi.org/10.1038/81137
  4. S. Strelkov, M. V. Elstermann and D. Schomburg, Bio. Chem., 385, 853-861(2004). https://doi.org/10.1515/BC.2004.111
  5. C. Denkert, J. Budczies, T. Kind, W. Weichert, P. Tablack, J. Sehouli, S. Niesporek, D. Koensgen, M. Dietel and O. Fiehn, Cancer Res., 66(22), 10795-10804(2006). https://doi.org/10.1158/0008-5472.CAN-06-0755
  6. J. Lisec, N. Schauer, J. Kopka, L. Willmitzer and A. R. Fernie, Nature Protocols 1, 387-396(2006). https://doi.org/10.1038/nprot.2006.59
  7. D. Y. Lee and O. Fiehn, Plant Methods, 4, 1-13(2008). https://doi.org/10.1186/1746-4811-4-1
  8. D. Herebian and B. Hanisch, F.-J. Marner, Metabolomics, 1(4), 317-324(2005).
  9. V. V. Tolstikov, Methods Mol. Biol., 544, 343-353(2009). https://doi.org/10.1007/978-1-59745-483-4_22
  10. A. Gordin, A. B. Fialkov and A. Amirav, Rapid Commun Mass Spectrom., 22(17), 2660-2666(2008). https://doi.org/10.1002/rcm.3654
  11. R. Flamini, A. D. Vedova, D. Cancian, A. Panighel and M. D. Rosso, J. Mass Spectrom., 42(5), 641-646(2007). https://doi.org/10.1002/jms.1193
  12. Q. Kuangnan, D. J. Gary and E. E. Kathleen, Int. J. Mass Spectrom., 265, 230-236(2007). https://doi.org/10.1016/j.ijms.2007.02.012
  13. R. C. Jose and P. R. Paul, Organic Geochemistry, 30, 279-286(1999). https://doi.org/10.1016/S0146-6380(99)00014-5
  14. W. Welthagen, S. Mitschke, F. Muhlberger and R. Zimmermann, J. Chromatogr. A., 1150, 54-61(2007). https://doi.org/10.1016/j.chroma.2007.03.033
  15. Z. Ralf, W. Werner and G. Thomas, J. Chromatogr. A., 1184, 296-308(2008). https://doi.org/10.1016/j.chroma.2007.08.081
  16. T. Kind and O. Fiehn, BMC Bioinformatics, 7, 234, 1-10(2006). https://doi.org/10.1186/1471-2105-7-1
  17. T. Kind and O. Fiehn, BMC Bioinformatics, 8, 115, 1-20(2007). https://doi.org/10.1186/1471-2105-8-1
  18. Y. Wang and M. Gu, Anal Chem., 82(17), 7055-62(2010). https://doi.org/10.1021/ac100888b
  19. J. C. Erve, M. Gu, Y. Wang, W. DeMaio and R. E. Talaat, J. Am. Soc. Mass. Spectrom., 20(11) 2058-69(2009). https://doi.org/10.1016/j.jasms.2009.07.014
  20. M. Gu, Y. Wang, X. G. Zhao and Z. M. Gu, Rapid Commun Mass Spectrom., 20(5), 764-70(2006). https://doi.org/10.1002/rcm.2377
  21. http://fiehnlab.ucdavis.edu/projects/Seven_Golden_Rules/
  22. T. Kind, G. Wohlgemuth, D. Y. Lee, Y. Lu, M. Palazoglu, S. Shahbaz and O. Fiehn, Anal. Chem., 81(24), 10038-10048(2009). https://doi.org/10.1021/ac9019522
  23. O. Masaki, Y. Hiroyuki, F. Hirohiko, K. Satoshi, Y. Daisuke, O. K. Koji, M. Eizi, S. Kazuhiko and U. Nobuo, Nucl. Instr. and Meth. in Phys. Res. B 236(1) 377-382(2005). https://doi.org/10.1016/j.nimb.2005.03.280
  24. T. Kind, V. V. Tolstikov, O. Fiehn and R. H. Weiss, Anal. Biochem., 363, 185-195(2007). https://doi.org/10.1016/j.ab.2007.01.028
  25. S. Abate, Y. G. Ahn,T. Kind, T. Cataldi and O. Fiehn, Rapid Commun Mass Spectrom., 24, 1172-1180(2010). https://doi.org/10.1002/rcm.4482