Suppressive Effect of Euryale ferox Salisbury Extracts on Inflammatory Response in LPS-stimulated RAW 264.7 Cells through the Antioxidative Mechanism

RAW 264.7 세포에서 Euryale ferox Salisbury 추출물의 항산화기전을 통한 산화적 스트레스.염증반응 억제효과 규명

  • Kim, Young-Hwan (Department of Diagnostics, College of Oriental Medicine, Dongguk University) ;
  • Lee, Min-Ja (Institute of Oriental Medicine, College of Oriental Medicine, Dongguk University) ;
  • Lee, Hye-Sook (Department of Diagnostics, College of Oriental Medicine, Dongguk University) ;
  • Kim, Jung-Guk (Department of Diagnostics, College of Oriental Medicine, Dongguk University) ;
  • Park, Won-Hwan (Department of Diagnostics, College of Oriental Medicine, Dongguk University)
  • 김영환 (동국대학교 한의과대학 진단학교실) ;
  • 이민자 (동국대학교 한의과대학 한의학연구소) ;
  • 이혜숙 (동국대학교 한의과대학 진단학교실) ;
  • 김정국 (동국대학교 한의과대학 진단학교실) ;
  • 박원환 (동국대학교 한의과대학 진단학교실)
  • Received : 2011.01.28
  • Accepted : 2011.03.16
  • Published : 2011.04.25

Abstract

The stems and branchs of Euryale ferox Salisbury (EF), are used in Chinese herbal medicine for latent-heat-clearing, antipyretic, detoxicant and anti-inflammatory ailments. This plant is used worldwide for the treatment of many types of inflammatory disease including respiratory infections, diabetes mellitus, rheumatoid arthritis and play an important role in the immune reaction. Topical natural antioxidants are a useful strategy for the prevention of oxidative stress mediated inflammatory disease. Plants produce significant amounts of antioxidants to prevent the oxidative stress caused by photons and oxygen, therefore they represent a potential source of new compounds with antioxidant activity. This study was designed to evaluate whether EFEA (ethylacetate fraction of EF) may ameliorate oxidative stress and inflammatory status through the antioxidative mechanism in LPS-stimulated RAW 264.7 murine macrophage cell line. Treatment of RAW 264.7 cells with EFEA significantly reduced LPS-stimulated inflammatory response in a dose-dependent manner. In conclusion, the EF extracts have anti-inflammatory effects in vitro system, which can be used for developing pharmaceutical drug against oxidative stress and chronic inflammatory disease.

Keywords

References

  1. Freeman, B.A., Crapo, J.D. Biology of disease: Free radicals and tissue injury. Laboratory Investigation; a Journal of Technical Methods and Pathology 47: 412-426, 1982.
  2. Sies, H. Oxidative stress: from basic research to clinical application. Am. J. Med. 30: 31S-38S, 1991.
  3. Finkel, T., Holbrook, N.J. Oxidants, oxidative stress and the biology of ageing. Nature 408(6809):239-247, 2000. https://doi.org/10.1038/35041687
  4. Azard, N., Rojanasakul, Y., Vallyathan, V. Inflammationand lung cancer: roles of reactive oxygen/nitrogen species. J Toxicol Environ Health B Crit Rev. 11(1):11-15, 2008.
  5. Halliwell, B., Gutteridga, J.M. Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem. J. 219: 1-14, 1984. https://doi.org/10.1042/bj2190001
  6. Forman, H.J., Torres, M. Redox signaling in macrophages. Mol. Aspects Med. 22(4-5):189-216, 2001. https://doi.org/10.1016/S0098-2997(01)00010-3
  7. Allenm, R., Tresini, M. Oxidative stress and gene regulation. Free Radic. Biol. Med. 28: 463-499, 2000. https://doi.org/10.1016/S0891-5849(99)00242-7
  8. Kim, H.J., Ahn, M.S., Kim, G.H., Kang, M.H. Antioxidant and antimicrobial activity of Pleurotus eryngii extracts prepared from different aerial part. Korean J. Food Sci. Technol. 38: 799-804, 2006.
  9. Ali, K.A., Abdelhak, M., George, B., Panagiotis, K. Tea and herbal infusions: Their antioxidant activity and phenolic propolis. Food Chemistry 89: 27-36, 2005. https://doi.org/10.1016/j.foodchem.2004.01.075
  10. Tsai, S.H., Lin-Shiau, S.Y., Lin, J.K. Supression of nitric oxide synthase and the down-regulation of the activation of $NF{\kappa}B$ in macrophages by resveratrol. Br J Pharmacol. 126(3):673-680, 1999. https://doi.org/10.1038/sj.bjp.0702357
  11. Liang, Y.C., Huang, Y.T., Tsai, S.H., Lin-Shiau, S.Y., Chen, C.F., Lin, J.K. Supression of inducible cyclooxygenase and inducible nitric oxide synthase by apigenin and related flavonoids in mouse macrophages. Carcinogenesis 20(10):1945-1952, 1999. https://doi.org/10.1093/carcin/20.10.1945
  12. 全國韓醫科大學 共同敎材編纂委員會 共編, 本草學, 서울, 永林社, pp 233-234, 1991.
  13. 鄭普變 辛民敎共編, 鄕藥(生藥)大辭典, 서울, 圖書出版 永林社, pp 938-940, 1990.
  14. Lee, S.E., Ju, E.M., Kim, J.H. Antioxidant activity of extracts from Euryale ferox seed. Exp Mol Med. 34: 100-106, 2002. https://doi.org/10.1038/emm.2002.15
  15. Puri, A., Sahai, R., Singh, K.L., Saxena, K.C. Immunostimulant activity of dry fruits and plant materials used in indian traditional medical system for mothers after child birth and invalids. J Ethnopharmacol. 71: 89-92, 2000. https://doi.org/10.1016/S0378-8741(99)00181-6
  16. Das, S., Der, P., Raychaudhuri, U., Maulik, N., Das, D.K. The effect of Euryale ferox (Makhana), an herb of aquatic origin, on myocardial ischemic reperfusion injury. Mol Cell Biochem. 289(1-2):55-63, 2006. https://doi.org/10.1007/s11010-006-9147-1
  17. Halliwell, B., Gutteridge, J.M. Role of free radicals and catalytic metalions in human disease: an overview. Method Enzymol. 186: 1-85, 1990.
  18. Sampath, V., Radish, A.C., Eis, A.L., Broniowska, K., Hogg, N., Konduri, G.G. Attenuation of lipopolysaccharide-induced oxidative stress and apoptosis in fetal pulmonary artery endothelial cells by hypoxia. Free Radic Biol Med. 46(5):663-671, 2009. https://doi.org/10.1016/j.freeradbiomed.2008.12.008
  19. Djordjevic, V.B. Free Radicals in Cell Biology. International Review of Cytology 237: 57-89, 2004.
  20. Kikuchi, G., Yoshida, T., Noguchi, M. Heme oxygenase and heme degradation. Biochemical and Biophysical Research Communications 338(1):558-567, 2005. https://doi.org/10.1016/j.bbrc.2005.08.020
  21. Yachie, A., Niida, Y., Wada, T., Igarashi, N., Kaneda, H., Toma, T., Ohta, K., Kasahara, Y., Koizumi, S. Oxidative stress causes enhanced endothelial cell injury in human heme oxygenase-1 deficiency. J Clin Invest. 103(1):129-135 1999. https://doi.org/10.1172/JCI4165
  22. Liu, Y.H., Lin, S.Y., Lee, C.C., Hou W.C. Antioxidant and nitric oxide production inhibitory activities of galacturonyl hydroxamic acid. Food Chemistry 109(1):159-166, 2008. https://doi.org/10.1016/j.foodchem.2007.12.055
  23. Yoshitake, J., Kato, K., Yoshioka, D., Sueishi, Y., Sawa, T., Akaike, T., Yoshimura, T. Suppression of NO production and 8-nitroguanosine formation by phenol-containing endocrine-disrupting chemicals in LPS-stimulated macrophages: Involvement of estrogen receptor-dependent or -independent pathways. Nitric Oxide 18(3):223-228, 2008. https://doi.org/10.1016/j.niox.2008.01.003
  24. Wang, H., Gao, J., Koua, J., Zhua, D., Yu, B. Anti-inflammatory activities of triterpenoid saponins from Polygala japonica. Phytomedicine 15: 321-326, 2008. https://doi.org/10.1016/j.phymed.2007.09.014
  25. Hsieh, Y.H., Kuo, P.M., Chien, S.C., Shyur, L.F., Wang, S.Y. Effects of Chamaecyparis formosensis Matasumura extractives on lipopolysaccharide-induced release of nitric oxide. Phytomedicine 14(10):675-680, 2007. https://doi.org/10.1016/j.phymed.2006.11.029
  26. Suh, S.J., Chung, T.W., Son, M.J., Kim, S.H., Moon, T.C., Son, K.H., Kim, H.P., Chang, H.W., Kim, C.H. The naturally occurring biflavonoid, ochnaflavone, inhibits LPS-induced iNOS expression, which is mediated by ERK1/2 via NF-${\kappa}B$ regulation, in RAW264.7 cells. Archives of Biochemistry and Biophysics 447(2):136-146, 2006. https://doi.org/10.1016/j.abb.2006.01.016
  27. Amiram, R., Angela, W., Ned, S., Philip, N. Regulation of fibroblast cyclooxygenase synthesis by interleukin-1. J. Bio. Chem. 263: 3022-3024, 1988.
  28. Sunnaramaiah, K., Telang, N., Ramonetti, J.T., Araki, R., Devito, B., Weksker, B.B., Dannenberg, A.J. Transcroption of cyclooxygenase-2 is enhanced in transformed mammary epithelial cells. Cancer Res. 56: 4424-4429, 1996.
  29. Rios, J.L., Recio, M.C. Natural products as modulators of apoptosis and their role in inflammation. Studies in Natural Products Chemistry 33(13):141-192, 2006.
  30. Gorczynski, R.M. Understanding classical conditioning of immune responses. Neuro Immune Biology 1: 237-254, 2005.
  31. Kalayarasan, S., Prabhu, P.N., Sriram, N., Manikandan, R., Arumugam, M., Sudhandiran, G. Diallyl sulfide enhances antioxidants and inhibits inflammation through the activation of Nrf2 against gentamicin-induced nephrotoxicity in Wistar rats. European Journal of Pharmacology 606(1-3):162-171, 2009. https://doi.org/10.1016/j.ejphar.2008.12.055
  32. Grimm, S., Baeuerle, P.A. The inducible transcription factor $NF{\kappa}B$: structure-function relationship of its protein subunits. Biochem J. 290: 297-308, 1993. https://doi.org/10.1042/bj2900297
  33. Henkel, T., Machleidt, T., Alkalay, I., Kranke, M., Ben-Neriah, Y., Baeuerle, P.A. Rapid proteolysis of $I{\kappa}B-{\alpha}$ is necessary for activation of transcription factor $NF-{\kappa}B$. Nature 365: 182-185, 1993. https://doi.org/10.1038/365182a0
  34. Jaiswal, A.K. Nrf2 signaling in coordinated activation of antioxidant gene expression. Free Radic Biol Med. 36: 1199-1207, 2004. https://doi.org/10.1016/j.freeradbiomed.2004.02.074
  35. Huang, H.C., Nguyen, T., Pickett, C.B. Phosphorylation of Nrf2 at Ser-40 by protein kinase C regulates antioxidant respponse element-mediated transcription. J Biol Chem. 277: 42769-42774, 2002. https://doi.org/10.1074/jbc.M206911200
  36. Yu., R., Chen, C., Mo, Y.Y., Hebbar, V., Owuor, E.D., Tan, T.H., Kong, A.N. Activation of Mitogen-activated Protein Kinase Pathways Induces Antioxidant Response Element-mediated Gene Expression via a Nrf2-dependent Mechanism. J Biol Chem. 275(51):39907-39913, 2000. https://doi.org/10.1074/jbc.M004037200
  37. Allanson, M., Reeve, V.E. Immunoprotective UVA (320-400nm) irradiation upregulates Heme Oxygenase-1 in the dermis and epidermis of hairless mouse skin. The Journal of Investigative Dermatology 122: 1030-1036, 2004. https://doi.org/10.1111/j.0022-202X.2004.22421.x
  38. Kikuchi, G., Yoshida, T., Noguchi, M. Heme oxygenase and heme degradation. Biochemical and Biophysical Research Communications 338(1):558-567, 2005. https://doi.org/10.1016/j.bbrc.2005.08.020
  39. Alam, J., Stewart, D., Touchard, C., Boinapally, S., Choi, A.M.K., Cook, J.L. Nrf2, a Cap'n'Collar Transcription Factor, Regulates Induction of the Heme Oxygenase-1 Gene. J Biol Chem. 274(37):26071-26078, 1999. https://doi.org/10.1074/jbc.274.37.26071
  40. Yachie, A., Niida, Y., Wada, T., Igarashi, N., Kaneda, H., Toma, T., Ohta, K., Kasahara, Y., Koizumi, S. Oxidative stress causes enhanced endothelial cell injury in human heme oxygenase-1 deficiency. J Clin Invest. 103(1):129-135, 1999. https://doi.org/10.1172/JCI4165