척수손상 흰쥐에서 자하거 약침과 침전기 자극이 신경성장인자 발현에 미치는 영향

Effects of Hominis Placenta Pharmacopuncture and Electroacupuncture Neuroprotection in Contused Spinal Cord of Rats

  • 투고 : 2011.01.07
  • 심사 : 2011.04.04
  • 발행 : 2011.04.25

초록

This study was designed to investigate the effects of Hominis placenta pharmacopuncture treatment and electroacupuncture therapy on the functional recovery and histological change, protein expression in spinal cord injury(SCI) rats. Experimental groups were divided into the Group I(normal control rat), Group II(Non-treatment after spinal cord injury induction), Group III(Hominis placenta pharmacopuncture treatment after SCI induction), Group IV (Electroacupuncture therapy after SCI induction), Group V(Hominis placenta pharmacopuncture treatment and electroacupuncture therapy after SCI induction). After operation, rats were tested at modified Tarlov test at 1 to 3 days with divided into 4 groups, and motor behavior test(BBB locomotor rating scale, Grid walk test) was examined at 3, 7, 14, and 21 days. For the observation of damage change and size of the organized surface in muscle and spinal cord, histopathological studies were performed at 21 days by H & E stain, and BDNF & NT-3 protein expression studies were performed at 21 days. Acco rding to the results, Hominis placenta pharmacopuncture treatment and electroacupuncture therapy can play a role in facilitating recovery of locomotion following spinal cord injury. Specially, Hominis placenta pharmacopuncture treatment and electroacupuncture combimed therapy after SCI induction was most improvement in functional recovery, BDNF, and NT-3 protein synthesis.

키워드

참고문헌

  1. Kwon, B.K., Tetzlaff, W., Grauer, J.N., Beiner, J., Vaccaro, A.R. Pathophysiology and pharmacologic treatment of acute spinal cord injury. Spine J. 4(4):451-464, 2004. https://doi.org/10.1016/j.spinee.2003.07.007
  2. Mautes, A.E., Weinzierl, M.R., Donovan, F., Noble, L.J. Vascular events after spinal cord injury: contribution to secondary pathogenesis. Phys Ther. 80(7):673-687, 2000.
  3. Ek, C.J., Habgood, M.D., Callaway, J.K., Dennis, R., Dziegielewska, K.M., Johansson, P.A., Potter, A., Wheaton, B., Saunders, N.R. Spatio-temporal progression of grey and white matter damage following contusion injury in rat spinal cord. PLoS One. 9;5(8):e12021, 2010. https://doi.org/10.1371/journal.pone.0012021
  4. McDonald, J.W., Sadowsky, C. Spinal-cord injury. Lancet. 2;359(9304):417-445, 2002.
  5. Amar, A.P., Levy, M.L. Pathogenesis and pharmacological strategies for mitigating secondary damage in acute spinal cord injury. Neurosurg. 44(5):1027-1039, 1999. https://doi.org/10.1097/00006123-199905000-00052
  6. Yeo, J.D. The use of hyperbaric oxygen to modify the effects of recent contusion injury to the spinal cord. CNS Trauma: J am paralysis assoc. 1(2):161-165, 1984.
  7. Young, W. Secondary injury mechanisms in acute spinal cord injury. J Emerg Med. 11(1):13-22, 1993.
  8. Juurlink, B.H., Paterson, P.G. Review of oxidative stress in brain and spinal cord injury: suggestions for pharmacological and nutritional management strategies. J spinal cord med. 21(4):309-334, 1998. https://doi.org/10.1080/10790268.1998.11719540
  9. Rowland, J.W., Hawryluk, G.W., Kwon, B., Fehlings, M.G. Current status of acute spinal cord injury pathophysiology and emerging therapies: promise on the horizon. Neurosurg focus. 25(5):E2, 2008. https://doi.org/10.3171/FOC.2008.25.11.E2
  10. Wrathall, J.R., Teng, Y.D., Choiniere, D. Amelioration of functional deficits from spinal cord trauma with systemically administered NBQX, an antagonist of non-N-methyl-D-aspartate receptors. Exp Neurol. 137(1):119-126, 1996. https://doi.org/10.1006/exnr.1996.0012
  11. Hawryluk, G.W., Rowland, J., Kwon, B.K., Fehlings, M.G. Protection and repair of the injured spinal cord: a review of completed, ongoing, and planned clinical trials for acute spinal cord injury. Neurosurg focus, 25(5):E14, 2008. https://doi.org/10.3171/FOC.2008.25.11.E14
  12. Onose, G., Anghelescu, A., Muresanu, D.F., Padure, L., Haras, M.A., Chendreanu, C.O., Onose, L.V., Mirea, A., Ciurea, A.V., El Masri, W.S., von Wild, K.R. A review of published reports on neuroprotection in spinal cord injury. Spinal Cord. 47(10):716-726, 2009. https://doi.org/10.1038/sc.2009.52
  13. Khalatbary, A.R., Tiraihi, T., Boroujeni, M.B., Ahmadvand, H., Tavafi, M., Tamjidipoor, A. Effects of epigallocatechin gallate on tissue protection and functional recovery after contusive spinal cord injury in rats. Brain res. 8;1306:168-175, 2010. https://doi.org/10.1016/j.brainres.2009.09.109
  14. Samantaray, S., Sribnick, E.A., Das, A., Thakore, N.P., Matzelle, D., Yu, S.P., Ray, S.K., Wei, L., Banik, N.L. Neuroprotective efficacy of estrogen in experimental spinal cord injury in rats. Ann N Y acad sci. 1199: 90-94, 2010. https://doi.org/10.1111/j.1749-6632.2009.05357.x
  15. Lu, J., Waite, P. Advances in spinal cord regeneration. Spine (Phila Pa 1976). 1;24(9):926-930, 1999. https://doi.org/10.1097/00007632-199905010-00019
  16. Barut, S., Unlü, Y.A., Karaoğlan, A., Tunçdemir, M., Dağistanli, F.K., Oztürk, M., Colak, A. The neuroprotective effects of z-DEVD.fmk, a caspase-3 inhibitor, on traumatic spinal cord injury in rats. Surg Neurol. 64(3):213-220, 2005. https://doi.org/10.1016/j.surneu.2005.03.042
  17. Bensky, D., Clavey, D., Stoger, E., Gamble, A. Chinese Herbal Medicine Materia Medica. 3rd Ed. Vista, CA: Eastland Press. pp 806-807, 2004.
  18. 이준무. 紫河車약침이 흰쥐의 혈액성상과 항산화효소의 활성에 미치는 영향. 경락경혈학회지 26(2):53-60, 2009.
  19. 장종범. 紫河車에 대한 고찰. 대한한의학회지 3(5):36-88, 1965.
  20. Yeom, M.J., Lee, H.C., Kim, G.H., Shim, I., Lee, H.J., Hahm, D.H. Therapeutic effects of hominis placenta injection into an acupuncture point on the inflammatory responses in subchondral bone region of adjuvant-induced polyarthritic rat. Biol Pharm Bull, 26(10):1472-1477, 2003. https://doi.org/10.1248/bpb.26.1472
  21. Filshie, J., White, A. Medical acupuncture. Churchill livingstone. London, pp 341-360, 1998.
  22. Stux, G., Pomeranz, B. Basics of acupuncture. Springer Verlag, Berlin, pp 1-250, 1995.
  23. Ceccherelli, F., Gagliardi, G., Visentin, R., Sandona, F., Casale, R., Giron, G. The effects of parachlorophenylalanine and naloxone on acupuncture and electroacupuncture modulation of capsaicin-induced neurogenic edema in the rat hind paw. A controlled blind study. Clin Exp Rheumatol. 17(6):655-662, 1999.
  24. Ulett, G.A., Han, S., Han, J.S. Electroacupuncture: mechanisms and clinical application. Biol psychiatry. 15;44(2):129-138, 1998. https://doi.org/10.1016/S0006-3223(97)00394-6
  25. Dai, Y., Kondo, E., Fukuoka, T., Tokunaga, A., Miki, K., Noguchi, K. The effect of electroacupuncture on pain behaviors and noxious stimulus-evoked fos expression in a rat model of neuropathic pain. J Pain. 2(3):151-159, 2001. https://doi.org/10.1054/jpai.2001.19964
  26. Behrmann, D.L., Bresnahan, J.C., Beattie, M.S., Shah, B.R. Spinal cord injury produced by consistent mechanical displacement of the cord in rats: behavioral and histologic analysis. J Neurotrauma. 9(3):197-217, 1992. https://doi.org/10.1089/neu.1992.9.197
  27. Basso, D.M., Beattie, M.S., Bresnahan, J.C. A sensitive and reliable locomotor rating scale for open field testing in rats. J Neurotrauma. 12(1):1-21, 1995. https://doi.org/10.1089/neu.1995.12.1
  28. Karim, A., Arslan, M.I. Isolation modifies the behavioural response in rats. Bangladesh Med Res Counc Bull. 26(1):27-32, 2000.
  29. Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 72: 48-254, 1976.
  30. Khalatbary, A.R., Tiraihi, T., Boroujeni, M.B., Ahmadvand, H., Tavafi, M., Tamjidipoor, A. Effects of epigallocatechin gallate on tissue protection and functional recovery after contusive spinal cord injury in rats. Brain Res. 8;1306: 168-175, 2010.
  31. Schwab, M.E., Bartholdi, D. Degeneration and regeneration of axons in the lesioned spinal cord. Physiol Rev. 76(2):319-370, 1996. https://doi.org/10.1152/physrev.1996.76.2.319
  32. Sandrow-Feinberg, H.R., Izzi, J., Shumsky, J.S., Zhukareva, V., Houle, J.D. Forced exercise as a rehabilitation strategy after unilateral cervical spinal cord contusion injury. J Neurotrauma. 26(5):721-731, 2009. https://doi.org/10.1089/neu.2008.0750
  33. Lovely, R.G., Gregor, R.J., Roy, R.R,. Edgerton, V.R. Effects of training on the recovery of full-weight-bearing stepping in the adult spinal cat. Exp Neurol. 92: 421-435, 1986. https://doi.org/10.1016/0014-4886(86)90094-4
  34. Stevens J.E. Liu M. Bose P. O'Steen W.A. Thompson F.J. Anderson D.K. Vandenborne K. Changes in soleus muscle function and fiber morphology with one week of locomotor training in spinal cord contusion injured rats. J Neurotrauma. 23: 1671-1681, 2006. https://doi.org/10.1089/neu.2006.23.1671
  35. Bareyre, F.M., Kerschensteiner, M., Raineteau, O., Mettenleiter, T.C., Weinmann, O., Schwab, M.E. The injured spinal cord spontaneously forms a new intraspinal circuit in adult rats. Nat Neurosci. 7: 269-277, 2004. https://doi.org/10.1038/nn1195
  36. Courtine, G., Song, B., Roy, R.R., Zhong, H., Herrmann, J.E., Ao, Y., Qi, J., Edgerton, V.R., Sofroniew, M.V. Recovery of supraspinal control of stepping via indirect propriospinal relay connections after spinal cord injury. Nat Med. 14: 69-74, 2008. https://doi.org/10.1038/nm1682
  37. Pitts, A.F., Miller, M.W. Expression of nerve growth factor, brain-derived neurotrophic factor, and neurotrophin-3 in the somatosensory cortex of the mature rat: coexpression with high-affinity neurotrophin receptors. J Comp Neurol. 13;418(3):241-254, 2000. https://doi.org/10.1002/(SICI)1096-9861(20000313)418:3<241::AID-CNE1>3.0.CO;2-M
  38. Scarisbrick, I.A., Isackson, P.J., Windebank, A.J. Differential expression of brain-derived neurotrophic factor, neurotrophin-3, and neurotrophin-4/5 in the adult rat spinal cord: regulation by the glutamate receptor agonist kainic acid. J Neurosci. 15;19(18):7757-7769, 1999.
  39. Heppenstall, P.A., Lewin, G.R. BDNF but not NT-4 is required for normal flexion reflex plasticity and function. Proc Natl Acad Sci USA. 3;98(14):8107-8112, 2001. https://doi.org/10.1073/pnas.141015098
  40. Lu, P., Jones, L.L., Snyder, E.Y., Tuszynski, M.H. Neural stem cells constitutively secrete neurotrophic factors and promote extensive host axonal growth after spinal cord injury. Exp Neurol. 181(2):115-129, 2003. https://doi.org/10.1016/S0014-4886(03)00037-2
  41. Novikova, L.N., Novikov, L.N., Kellerth, J.O. Survival effects of BDNF and NT-3 on axotomized rubrospinal neurons depend on the temporal pattern of neurotrophin administration. Eur J Neurosci. 12(2):776-780, 2000. https://doi.org/10.1046/j.1460-9568.2000.00978.x