DOI QR코드

DOI QR Code

Arginase Inhibition by Ethylacetate Extract of Caesalpinia sappan Lignum Contributes to Activation of Endothelial Nitric Oxide Synthase

  • Shin, Woo-Sung (Department of Biology, Kangwon National University) ;
  • Cuong, To Dao (Department of Pharmacy, Catholic University) ;
  • Lee, Jeong-Hyung (Department of Biochemistry, Kangwon National University) ;
  • Min, Byung-Sun (Department of Pharmacy, Catholic University) ;
  • Jeon, Byeong-Hwa (Infectious Signaling Network Research Center, Department of Physiology, School of Medicine, Chungnam National University) ;
  • Lim, Hyun-Kyo (Department of Anesthesiology and Pain Medicine, Yonsei University Wonju College of Medicine) ;
  • Ryoo, Sung-Woo (Department of Biology, Kangwon National University)
  • Received : 2011.04.05
  • Accepted : 2011.05.30
  • Published : 2011.06.30

Abstract

Caesalpinia sappan (C. sappan) is a medicinal plant used for promoting blood circulation and removing stasis. During a screening procedure on medicinal plants, the ethylacetate extract of the lignum of C. sappan (CLE) showed inhibitory activity on arginase which has recently been reported as a novel therapeutic target for the treatment of cardiovascular diseases such as atherosclerosis. CLE inhibited arginase II activity prepared from kidney lysate in a dose-dependent manner. In HUVECs, inhibition of arginase activity by CLE reciprocally increased NOx production through enhancement of eNOS dimer stability without any significant changes in the protein levels of eNOS and arginase II expression. Furthermore, CLE-dependent arginase inhibition resulted in increase of NO generation and decrease of superoxide production on endothelium of isolated mice aorta. These results indicate that CLE augments NO production on endothelium through inhibition of arginase activity, and may imply their usefulness for the treatment of cardiovascular diseases associated with endothelial dysfunction.

Keywords

References

  1. Xie YW, Ming DS, Xu HX, Dong H, But PP. Vasorelaxing effects of Caesalpinia sappan involvement of endogenous nitric oxide. Life Sci. 2000;67:1913-1918. https://doi.org/10.1016/S0024-3205(00)00772-4
  2. Baek NI, Jeon SG, Ahn EM, Hahn JT, Bahn JH, Jang JS, Cho SW, Park JK, Choi SY. Anticonvulsant compounds from the wood of Caesalpinia sappan L. Arch Pharm Res. 2000;23:344-348. https://doi.org/10.1007/BF02975445
  3. Oh SR, Kim DS, Lee IS, Jung KY, Lee JJ, Lee HK. Anticomplementary activity of constituents from the heartwood of Caesalpinia sappan. Planta Med. 1998;64:456-458. https://doi.org/10.1055/s-2006-957481
  4. Berkowitz DE, White R, Li D, Minhas KM, Cernetich A, Kim S, Burke S, Shoukas AA, Nyhan D, Champion HC, Hare JM. Arginase reciprocally regulates nitric oxide synthase activity and contributes to endothelial dysfunction in aging blood vessels. Circulation. 2003;108:2000-2006. https://doi.org/10.1161/01.CIR.0000092948.04444.C7
  5. White AR, Ryoo S, Li D, Champion HC, Steppan J, Wang D, Nyhan D, Shoukas AA, Hare JM, Berkowitz DE. Knockdown of arginase I restores NO signaling in the vasculature of old rats. Hypertension. 2006;47:245-251. https://doi.org/10.1161/01.HYP.0000198543.34502.d7
  6. Steppan J, Ryoo S, Schuleri KH, Gregg C, Hasan RK, White AR, Bugaj LJ, Khan M, Santhanam L, Nyhan D, Shoukas AA, Hare JM, Berkowitz DE. Arginase modulates myocardial contractility by a nitric oxide synthase 1-dependent mechanism. Proc Natl Acad Sci USA. 2006;103:4759-4764. https://doi.org/10.1073/pnas.0506589103
  7. Chicoine LG, Paffett ML, Young TL, Nelin LD. Arginase inhibition increases nitric oxide production in bovine pulmonary arterial endothelial cells. Am J Physiol Lung Cell Mol Physiol. 2004;287:L60-68. https://doi.org/10.1152/ajplung.00194.2003
  8. Klasen S, Hammermann R, Fuhrmann M, Lindemann D, Beck KF, Pfeilschifter J, Racke K. Glucocorticoids inhibit lipopolysaccharide- induced up-regulation of arginase in rat alveolar macrophages. Br J Pharmacol. 2001;132:1349-1357. https://doi.org/10.1038/sj.bjp.0703951
  9. Louis CA, Reichner JS, Henry WL Jr, Mastrofrancesco B, Gotoh T, Mori M, Albina JE. Distinct arginase isoforms expressed in primary and transformed macrophages: regulation by oxygen tension. Am J Physiol. 1998;274:R775-782.
  10. Morris CR, Poljakovic M, Lavrisha L, Machado L, Kuypers FA, Morris SM Jr. Decreased arginine bioavailability and increased serum arginase activity in asthma. Am J Respir Crit Care Med. 2004;170:148-153. https://doi.org/10.1164/rccm.200309-1304OC
  11. Modolell M, Corraliza IM, Link F, Soler G, Eichmann K. Reciprocal regulation of the nitric oxide synthase/arginase balance in mouse bone marrow-derived macrophages by TH1 and TH2 cytokines. Eur J Immunol. 1995;25:1101-1104. https://doi.org/10.1002/eji.1830250436
  12. Nelin LD, Wang X, Zhao Q, Chicoine LG, Young TL, Hatch DM, English BK, Liu Y. MKP-1 switches arginine metabolism from nitric oxide synthase to arginase following endotoxin challenge. Am J Physiol Cell Physiol. 2007;293:C632-640. https://doi.org/10.1152/ajpcell.00137.2006
  13. Que LG, Kantrow SP, Jenkinson CP, Piantadosi CA, Huang YC. Induction of arginase isoforms in the lung during hyperoxia. Am J Physiol. 1998;275:L96-102.
  14. Ryoo S, Lemmon CA, Soucy KG, Gupta G, White AR, Nyhan D, Shoukas A, Romer LH, Berkowitz DE. Oxidized low-density lipoprotein-dependent endothelial arginase II activation contributes to impaired nitric oxide signaling. Circ Res. 2006;99:951-960. https://doi.org/10.1161/01.RES.0000247034.24662.b4
  15. Romero MJ, Platt DH, Tawfik HE, Labazi M, El-Remessy AB, Bartoli M, Caldwell RB, Caldwell RW. Diabetes-induced coronary vascular dysfunction involves increased arginase activity. Circ Res. 2008;102:95-102. https://doi.org/10.1161/CIRCRESAHA.107.155028
  16. Bivalacqua TJ, Hellstrom WJ, Kadowitz PJ, Champion HC. Increased expression of arginase II in human diabetic corpus cavernosum: in diabetic-associated erectile dysfunction. Biochem Biophys Res Commun. 2001;283:923-927. https://doi.org/10.1006/bbrc.2001.4874
  17. De Vriese AS, Verbeuren TJ, Van de Voorde J, Lameire NH, Vanhoutte PM. Endothelial dysfunction in diabetes. Br J Pharmacol. 2000;130:963-974. https://doi.org/10.1038/sj.bjp.0703393
  18. Demougeot C, Prigent-Tessier A, Marie C, Berthelot A. Arginase inhibition reduces endothelial dysfunction and blood pressure rising in spontaneously hypertensive rats. J Hypertens. 2005;23:971-978. https://doi.org/10.1097/01.hjh.0000166837.78559.93
  19. Xu W, Kaneko FT, Zheng S, Comhair SA, Janocha AJ, Goggans T, Thunnissen FB, Farver C, Hazen SL, Jennings C, Dweik RA, Arroliga AC, Erzurum SC. Increased arginase II and decreased NO synthesis in endothelial cells of patients with pulmonary arterial hypertension. FASEB J. 2004;18:1746-1748. https://doi.org/10.1096/fj.04-2317fje
  20. Johnson FK, Johnson RA, Peyton KJ, Durante W. Arginase inhibition restores arteriolar endothelial function in Dahl rats with salt-induced hypertension. Am J Physiol Regul Integr Comp Physiol. 2005;288:R1057-1062. https://doi.org/10.1152/ajpregu.00758.2004
  21. Ryoo S, Gupta G, Benjo A, Lim HK, Camara A, Sikka G, Lim HK, Sohi J, Santhanam L, Soucy K, Tuday E, Baraban E, Ilies M, Gerstenblith G, Nyhan D, Shoukas A, Christianson DW, Alp NJ, Champion HC, Huso D, Berkowitz DE. Endothelial arginase II: a novel target for the treatment of atherosclerosis. Circ Res. 2008;102:923-932. https://doi.org/10.1161/CIRCRESAHA.107.169573
  22. Woo A, Min B, Ryoo S. Piceatannol-3'-O-beta-D-glucopyranoside as an active component of rhubarb activates endothelial nitric oxide synthase through inhibition of arginase activity. Exp Mol Med. 2010;42:524-532. https://doi.org/10.3858/emm.2010.42.7.053
  23. Ye M, Xie WD, Lei F, Meng Z, Zhao YN, Su H, Du LJ. Brazilein, an important immunosuppressive component from Caesalpinia sappan L. Int Immunopharmacol. 2006;6:426-432. https://doi.org/10.1016/j.intimp.2005.09.012
  24. Zhang C, Hein TW, Wang W, Chang CI, Kuo L. Constitutive expression of arginase in microvascular endothelial cells counteracts nitric oxide-mediated vasodilatory function. FASEB J. 2001;15:1264-1266. https://doi.org/10.1096/fj.00-0681fje
  25. Forstermann U, Munzel T. Endothelial nitric oxide synthase in vascular disease: from marvel to menace. Circulation. 2006;113:1708-1714. https://doi.org/10.1161/CIRCULATIONAHA.105.602532
  26. Li H, Meininger CJ, Hawker JR Jr, Haynes TE, Kepka-Lenhart D, Mistry SK, Morris SM Jr, Wu G. Regulatory role of arginase I and II in nitric oxide, polyamine, and proline syntheses in endothelial cells. Am J Physiol Endocrinol Metab. 2001;280:E75-82. https://doi.org/10.1152/ajpendo.2001.280.1.E75
  27. Li H, Meininger CJ, Kelly KA, Hawker JR Jr, Morris SM Jr, Wu G. Activities of arginase I and II are limiting for endothelial cell proliferation. Am J Physiol Regul Integr Comp Physiol. 2002;282:R64-69. https://doi.org/10.1152/ajpregu.2002.282.1.R64
  28. Faffe DS, Flynt L, Mellema M, Whitehead TR, Bourgeois K, Panettieri RA Jr, Silverman ES, Shore SA. Oncostatin M causes VEGF release from human airway smooth muscle: synergy with IL-1beta. Am J Physiol Lung Cell Mol Physiol. 2005;288:L1040-1048. https://doi.org/10.1152/ajplung.00333.2004
  29. Bivalacqua TJ, Liu T, Musicki B, Champion HC, Burnett AL. Endothelial nitric oxide synthase keeps erection regulatory function balance in the penis. Eur Urol. 2007;51:1732-1740. https://doi.org/10.1016/j.eururo.2006.10.061
  30. Hsu LL, Champion HC, Campbell-Lee SA, Bivalacqua TJ, Manci EA, Diwan BA, Schimel DM, Cochard AE, Wang X, Schechter AN, Noguchi CT, Gladwin MT. Hemolysis in sickle cell mice causes pulmonary hypertension due to global impairment in nitric oxide bioavailability. Blood. 2007;109:3088-3098.
  31. Xu X, Gao X, Potter BJ, Cao JM, Zhang C. Anti-LOX-1 rescues endothelial function in coronary arterioles in atherosclerotic ApoE knockout mice. Arterioscler Thromb Vasc Biol. 2007;27:871-877. https://doi.org/10.1161/01.ATV.0000259358.31234.37

Cited by

  1. Arginase as a Critical Prooxidant Mediator in the Binomial Endothelial Dysfunction-Atherosclerosis vol.2015, pp.None, 2011, https://doi.org/10.1155/2015/924860
  2. PERSPECTIVES OF WOOD-GREENERY BIOTECHNOLOGY ENRICHMENT WITH L-ARGININE AND INHIBITORS OF ITS CATABOLISM vol.2019, pp.1, 2011, https://doi.org/10.14258/jcprm.2019014243
  3. Roles of eNOS in atherosclerosis treatment vol.68, pp.6, 2019, https://doi.org/10.1007/s00011-019-01229-9
  4. Ocimum gratissimum Linn. Leaves reduce the key enzymes activities relevant to erectile dysfunction in isolated penile and testicular tissues of rats vol.19, pp.None, 2019, https://doi.org/10.1186/s12906-019-2481-0
  5. Arginase as a Potential Biomarker of Disease Progression: A Molecular Imaging Perspective vol.21, pp.15, 2020, https://doi.org/10.3390/ijms21155291