DOI QR코드

DOI QR Code

A Research Trend on Utilization of the Byproducts(Lignin) from Bioethanol Production Process with Lignocellulosic Biomass: A Literature Review

목질바이오매스 에너지 부산물(리그닌)이용에 관한 연구 동향

  • Kim, Yeong-Suk (Dept. of Forest Products and Biotechnology, College of Forest Science, Kookmin University)
  • 김영숙 (국민대학교 삼림과학대학 임산생명공학과)
  • Received : 2010.11.30
  • Accepted : 2011.01.14
  • Published : 2011.12.31

Abstract

This study reviewed on the research trend of sources and utilization of the byproducts(Lignin) from bioethanol production process with lignocellulosic biomass such as wood, agri-processing by-products(corn fiber, sugarcane bagasse etc.) and energy crops(switch grass, poplar, Miscanthus etc.). During biochemical conversion process, only Cellulose and hemicellulosic fractions are converted into fermentable sugar, but lignin which represents the third largest fraction of lignocellulosic biomass is not convertible into fermentable sugars. It is therefore extremely important to recover and convert biomass-derived Lignin into high-value products to maintain economic competitiveness of cellulosic ethanol processes. It was introduced that lignin types and characteristics were different from various isolation methods and biomass sources. Also utilization and potentiality for market of those were discussed.

Keywords

References

  1. Boopathy, R,. 1998. Biological treatment of swine waste using anaerobic baffled reactors. Bioresour. Technol. 64: 1-6. https://doi.org/10.1016/S0960-8524(97)00178-8
  2. Bozell, J. J., J. E. Holladay, D. Johnson,, and J. F. White, 2007. Top value Added Chemicals from Biomass- Volume II:Results of Screening for Potential Candidates from Bio refinery Lignin. PNNL- 16983, Pacific Northwest National Laboratory(PNNL) and the National renewable Energy Laboratory(NREL), Richland, WA
  3. Bracmort, K. R.., Schnepf, M. Stubbs and B. D. Yacobucci. 2011. Cellulosic biofuels: Analysis of policy issues for congress, In:Biofuels, Biofefinery and Renewable Energy: Issues and Development, p1-23, Nova science publishers, Inc.
  4. Cheung, S. W., and B. C. Anderson, 1997. Laboratory investigation of ethanol production from municipal primary wastewater. Bioresour. Technol. 59: 81-96. https://doi.org/10.1016/S0960-8524(96)00109-5
  5. Dewes, T., and E. Hünsche, 1998. Composition and microbial degradability in the soil of farmyard manure from ecologicallymanaged farms. Biol. Agric. Hortic. 16: 251-268. https://doi.org/10.1080/01448765.1998.10823199
  6. DOE office of the biomass program, 2006. Biomass multi year plan, http://www1.eere.energy.gov/biomass pdfs/biomass_program_ mypp.pdf
  7. Eckert, C., C. Liottaabc, A. Ragauskasb, J. Hallettac, C. Kitchensac, E. Hillac,. and L. Draucker,. 2007. Tunable solvents for fine chemicals from the biorefinery. Green Chem. 9: 545-548. https://doi.org/10.1039/b614051c
  8. Eggeman, T., and R. T. Elander, 2005. Process and economic analysis of pretreatment technologies. Bioresour Technol. 96: 2019-2025. https://doi.org/10.1016/j.biortech.2005.01.017
  9. EPA., 1995. Chemical wood pulping. Chapter 10.2 in Compilation of Air Pollutant Emission Factors, Volume 1: Stationary Point and Area Sources, United States Environmental Protection Agency, Washington, DC.
  10. Faix, O., 1992. New aspects of Lignin utilization in large amounts. Papier. 12: 733-740.
  11. Hamelinck, C. N., G. V. Hooijdonk, and A. P. C. Faaij, 2005. Etanol from lignocellulosic biomass: techno-economic performance in short-, middle-and long-term. Biomass and Bioenergy. 28(4): 384-410. https://doi.org/10.1016/j.biombioe.2004.09.002
  12. Holladay, J. E., J. J. Bozill, J. F. White and D. Johnson, 2007. Top Value-added Chemicals from Biomass, Vol II, Pacific Northwest National Laboratory operated by Battelle fot the U.S.Department of Energy.
  13. Johnson, J. M., L. Carpenter-boggs, and M. J. Lindstrom, 2003. Humic acid and aggregate stability in amended soils. Proceedings of the Natural Organic Matter in Soils and Water North Central Region Symposium, 21.
  14. Jungmeier G. and F. Cherubini, 2008. Overview of biorefinery concepts and basics for their greenhouse gas balance, International workshop in cooperation with the Salzburg State Government.
  15. Kadla, J.F., S. Kubo, R. A. Venditti. R. D. Gilbert, A. L. Compere, and W. Griffith, 2002. Lignin-based carbon fibers for composite fiber applications. Carbon. 40: 2913-2920. https://doi.org/10.1016/S0008-6223(02)00248-8
  16. Khanal, S. K., R. Y. Surampalli, T. C. Zhang, B. P. Lamsal, R. D. Tyagi, and C. M. Kao. 2010. Bioenergy and biofuel from biowastes and biomass. p179, p201, ASCE.
  17. IEA, 2010. Bioenergy Report: Update 47,
  18. Lindberg, J. J., T. A Kuusela, and K. Levon. 1989. Specialty polymers from Lignin. Section in Lignin: Properties and Materials, ACS Symposium Series NO. 397, Glasser, W.G., and Sarkanen, S (Eds.), American Chemical Society, Washington, DC. pp. 190-204.
  19. Lora, J. H., and W. G., Glasser, 2002. Recent industrial applications of Lignin: a sustainable alternative to nonrenewable materials. J Polym Environ. 10: 39-48. https://doi.org/10.1023/A:1021070006895
  20. Puppala, A.J., and S. Hanchanloet, 1999. Evaluation of a chemical treatment method (sulphuric acid and Lignin mixture) on strength and resilient properties of cohesive soils. 78th Transportation Research Board Annual Meeting, CD ROM, National Research Council, National Academy of Science, Washington, DC.
  21. Reddy, N., and Y. Yang, 2005. Biofibers from agricultural byproducts for industrial applications. Trends Biotechnol. 23: 22-27. https://doi.org/10.1016/j.tibtech.2004.11.002
  22. Ree, R. V., and B, Annevelink, 2007. Status Report Biofefinery 2007, Agrotechnology and Food Sciences Group.
  23. Reshamwala, S., B. T Shawky., and B. E. Dale, 1995. Ethanol production from enzymatic hydrolysates of AFEX-treated coastal Bermuda grass and switchgrass. Appl. Biochem. Biotechnol. 51/52: 43-55. https://doi.org/10.1007/BF02933410
  24. Rudie, A.W., 2011. Staate of the art in biorefinery in Finland and the United States, 2008, In: Biofuels, Biofefinery and Renewable Energy: Issues and Development, p37, Nova science publishers, Inc.
  25. Shimizu, K., K. Sudo, H Ono., M. Ishihara, T. Fujii, and S Hishiyama,. 1998. Integrated process for total utilization of wood components by steam-explosion pretreatment. Biomass Bioenerg. 14: 195-203. https://doi.org/10.1016/S0961-9534(97)10044-7
  26. Sims, R,M. J. T. Saddler and W. Mabee, 2009. From 1st tod 2nd generation biofuel technologies: An overview of current industry and RD&D activities(A joint Task 39 and IEAHQ Report)
  27. Sudo, K., and K. Shimizu, 1992. A new carbon fiber from Lignin. J Appl Polym Sci. 44: 127-134. https://doi.org/10.1002/app.1992.070440113
  28. Sun, Y., and, J. Cheng. 2002. Hydrolysis of lignocellulosic materials for ethanol production a review. Bioresource Technology. 83(1): 1-11. https://doi.org/10.1016/S0960-8524(01)00212-7
  29. Wallberg, O., A., Holmqvist and A. S. Jonsson, 2005. Ultrafiltration of Kraft cooking liquors from a continuos cooking process. Desalination. 180(1-3): 109-118. https://doi.org/10.1016/j.desal.2004.12.032
  30. Willfoer, S., A. Sundberg, J. Hemming, and B. Holmbom,. 2005$\beta$. Polysaccharides in some industrially important softwood species. Wood Sci Technol. 39: 245-257. https://doi.org/10.1007/s00226-004-0280-2
  31. Willfoer, S., A. Sundberg, A. Pranovich, and B. Holmbom,. 2005$\alpha$. Polysaccharides in some industrially important hardwood species. Wood Sci. Technol. 39: 601-617. https://doi.org/10.1007/s00226-005-0039-4
  32. Wyman, C. E., B. E Dale, R. T. Elander, M. Holtzapple, M. R. Ladisch, and Y. Y. Lee, 2005. Comparative sugar recovery data from laboratory scale application of leading pretreatment technologies to corn stover. Biores Technol. 96: 2026-2032. https://doi.org/10.1016/j.biortech.2005.01.018
  33. Zhang, Y. H. P., M. Himmel, and J. R. Mielenz, 2006. Outlook for cellulase improvement: screening and selection strategies. Biotechnol Adv. 24: 452-481. https://doi.org/10.1016/j.biotechadv.2006.03.003
  34. Zhang, Y. H. P., 2008. Reviving the carbohydrate economy via multi-product lignocellulose biorefineries, J. Ind. Microbiol. Biotechnol. 35: 367-375. https://doi.org/10.1007/s10295-007-0293-6