DOI QR코드

DOI QR Code

Selective Separation of Semiconducting Single-Walled Carbon Nanotubes via Microwave Irradiation

마이크로웨이브 조사를 이용한 반도체성 단일벽 탄소나노튜브의 선택적 분리

  • Kim, Sung-Hwan (BK21 Physics Research Division and Department of Energy Science, Sungkyunkwan University) ;
  • Song, Woo-Seok (BK21 Physics Research Division and Department of Energy Science, Sungkyunkwan University) ;
  • Kim, Yoo-Seok (BK21 Physics Research Division and Department of Energy Science, Sungkyunkwan University) ;
  • Kim, Soo-Youn (BK21 Physics Research Division and Department of Energy Science, Sungkyunkwan University) ;
  • Park, Chong-Yun (BK21 Physics Research Division and Department of Energy Science, Sungkyunkwan University)
  • 김성환 (성균관대학교 BK21 물리연구단, 에너지과학과) ;
  • 송우석 (성균관대학교 BK21 물리연구단, 에너지과학과) ;
  • 김유석 (성균관대학교 BK21 물리연구단, 에너지과학과) ;
  • 김수연 (성균관대학교 BK21 물리연구단, 에너지과학과) ;
  • 박종윤 (성균관대학교 BK21 물리연구단, 에너지과학과)
  • Received : 2011.04.28
  • Accepted : 2011.06.15
  • Published : 2011.07.30

Abstract

In this study, single-walled carbon nanotubes (SWCNTs) were synthesized on a Fe/$Al_2O_3$/Si layer by thermal chemical vapor deposition. Metallic SWCNTs were selectively removed by microwave irradiation. Electrical and structural characterizations of the SWCNTs clearly revealed that the metallic SWCNTs were almost removed by microwave irradiation for 120 sec. The remained semiconducting SWCNTs with a high crystalline structure were obtained over 95%. This method would provide useful information for applications to SWCNTs-based field effect transistors and multifaceted nanoelectronics.

본 연구에서는 열화학기상증착법과 나노구조의 Fe/$Al_2O_3$/Si 촉매층을 이용하여 단일벽 탄소나노튜브를 합성하고 마이크로웨이브 조사를 통해 금속성 단일벽 탄소나노튜브를 선택적으로 제거하고 반도체성 단일벽 탄소나노튜브를 분리하였다. 조사시간의 변화에 따른 단일벽 탄소나노튜브의 전기적, 구조적 특성을 분석한 결과, 조사시간이 120초인 경우, 금속성의 단일벽 탄소나노튜브가 선택적으로 제거되어 약 95%의 반도체성 단일벽 탄소나노튜브를 분리할 수 있었으며, 뿐만 아니라 남아있는 반도체성 단일벽 탄소나노튜브가 손상 없이 우수한 결정성을 지니는 것을 확인할 수 있었다. 이러한 방법은 반도체성 단일벽 탄소 나노튜브를 기반으로 한 전계효과 트랜지스터 및 다양한 나노전자소자의 응용에 유용한 정보를 제공하리라 기대한다.

Keywords

References

  1. Z. Yao, C. L. Kane, and C. Dekker, Phys. Rev. Lett. 84, 2941 (2000). https://doi.org/10.1103/PhysRevLett.84.2941
  2. C. T. White and T. N. Todorov, Nature 393, 240 (1998). https://doi.org/10.1038/30420
  3. A. Javey, J. Guo, Q. Wang, M. Lundstrom, and H. Dai, Nature 424, 654 (2003). https://doi.org/10.1038/nature01797
  4. S. J. Tans, A. R. M. Verschueren, and C. Dekker, Nature 393, 49 (1998). https://doi.org/10.1038/29954
  5. T. Durkop, S. A. Getty, E. Cobas, and M. S. Fuhrer, Nano Lett. 4, 35 (2004). https://doi.org/10.1021/nl034841q
  6. R. Saito, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, Appl. Phys. Lett. 60, 2204 (1992). https://doi.org/10.1063/1.107080
  7. Z. Chen, J. Appenzeller, J. Knoch, Y. Lin, and P. Avouris, Nano Lett. 5, 1497 (2005). https://doi.org/10.1021/nl0508624
  8. R. Krupke, F. Hennrich, H. V. Lohneysen, and M. M. Kappes, Science 301, 344 (2003). https://doi.org/10.1126/science.1086534
  9. G. Zhang, P. Qi, X. Wang, Y. Lu, X. Li, R. Tu, S. Bangsaruntip, D. Mann, L. Zhang, and H. Dai, Science 314, 974 (2006). https://doi.org/10.1126/science.1133781
  10. G. Hong, B. Zhang, B. Peng, J. Zhang, W. M. Choi, J. Y. Choi, J. M. Kim, and Z. Liu, J. Am. Chem. Soc. 131, 14642 (2009). https://doi.org/10.1021/ja9068529
  11. M. S. Arnold, A. A. Green, J. F. Hulvat, S. I. Stupp, and M. C. Hersam, Nature Nanotechnol. 1, 60 (2006). https://doi.org/10.1038/nnano.2006.52
  12. W. Song, W. C. Choi, C. Jeon, D. H. Ryu, S. Y. Lee, Y. S. Shin, and C. -Y. Park, J. Korean Vaccum Soc. 16, 377 (2007). https://doi.org/10.5757/JKVS.2007.16.5.377
  13. S. M. Bachilo, M. S. Strano, C. Kittrell, R. H. Hauge, R. E. Smalley, and R. B. Weisman, Science 298, 2361 (2002). https://doi.org/10.1126/science.1078727
  14. M. S. Dresselhaus, G. Dresselhaus, R. Saito, and A. Jorio, Phys. Rep. 409, 47 (2005). https://doi.org/10.1016/j.physrep.2004.10.006
  15. E. T. Thostenson and T. -W. Chou, Composites: Part A 30, 1055 (1999). https://doi.org/10.1016/S1359-835X(99)00020-2
  16. L. X. Benedict, S. G. Louie, and M. L. Cohen, Phys. Rev. B. 52, 8541 (1995). https://doi.org/10.1103/PhysRevB.52.8541
  17. S. D. M. Brown, A. Jorio, P. Corio, M. S. Dresselhaus, G. Dresselhaus, R. Saito, and K. Kneipp, Phys. Rev. B. 63, 155414 (2001). https://doi.org/10.1103/PhysRevB.63.155414
  18. H. C. Shim, J. W. Song, Y. K. Kwak, S. Kim, and C. S. Han, Nanotechnology 20, 65707 (2009). https://doi.org/10.1088/0957-4484/20/6/065707
  19. W. Lin, K. S. Moon, S. Zhang, Y. Ding, J. Shang, M. Chen, and C. P. Wong, ACS Nano 4, 1716 (2010). https://doi.org/10.1021/nn901621c