Hemispheric Asymmetry of Plasticity in the Human Motor Cortex Induced by Paired Associative Stimulation

말초신경-피질 연계자극에 의해 유도되는 운동피질 가소성의 비대칭성

  • Shin, Hae-Won (Department of Neurology, Yonsei University College of Medicine) ;
  • Sohn, Young-H. (Department of Neurology, Yonsei University College of Medicine)
  • 신혜원 (연세대학교 의과대학 신경과학교실) ;
  • 손영호 (연세대학교 의과대학 신경과학교실)
  • Received : 2010.11.11
  • Accepted : 2011.03.03
  • Published : 2011.06.30

Abstract

Background: In the brain, the dominant primary motor cortex (M1) has a greater hand representation area, shows more profuse horizontal connections, and shows a greater reduction in intracortical inhibition after hand exercise than does the non-dominant M1, suggesting a hemispheric asymmetry in M1 plasticity. Methods: We performed a transcranial magnetic stimulation (TMS) study to investigate the hemispheric asymmetry of paired associative stimulation (PAS)-induced M1 plasticity in 9 right-handed volunteers. Motor evoked potentials (MEPs) were measured in the abductor pollicis brevis (APB) muscles of both hands, and MEP recruitment curves were measured at different stimulation intensities, before and after PAS. Results: MEP recruitment curves were significantly enhanced in the dominant, but not the non-dominant M1. Conclusions: These results demonstrate that the dominant M1 has greater PAS-induced plasticity than does the non-dominant M1. This provides neurophysiological evidence for the asymmetrical performance of motor tasks related to handedness.

Keywords

References

  1. Elbert T, Rockstroh B. Reorganization of human cerebral cortex: the range of changes following use and injury. Neuroscientist 2004;10:129-141. https://doi.org/10.1177/1073858403262111
  2. Sanes JN, Donoghue JP. Plasticity and primary motor cortex. Annu Rev Neurosci 2000;23:393-415. https://doi.org/10.1146/annurev.neuro.23.1.393
  3. Bliss TV, Gardner-Medwin AR. Long-lasting potentiation of synaptic transmission in the dentate area of the unanaestetized rabbit following stimulation of the perforant path. J Physiol 1973;232:357-374. https://doi.org/10.1113/jphysiol.1973.sp010274
  4. Bliss TV, Lomo T. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol 1973;232:331-356. https://doi.org/10.1113/jphysiol.1973.sp010273
  5. Hebb DO. The organization of behavior. New York: Willey, 1949.
  6. Triggs WJ, Calvanio R, Levine M, Heaton RK, Heilman KM. Predicting hand preference with performance on motor tasks. Cortex 2000;36:679-689. https://doi.org/10.1016/S0010-9452(08)70545-8
  7. Amunts K, Schlaug G, Schleicher A, Steinmetz H, Dabringhaus A, Roland PE, et al. Asymmetry in the human motor cortex and handedness. Neuroimage 1996;4:216-222. https://doi.org/10.1006/nimg.1996.0073
  8. Amunts K, Schmidt-Passos F, Schleicher A, Zilles K. Postnatal development of interhemispheric asymmetry in the cytoarchitecture of human area 4. Anat Embryol (Berl) 1997;196:393-402. https://doi.org/10.1007/s004290050107
  9. Nudo RJ, Jenkins WM, Merzenich MM, Prejean T, Grenda R. Neurophysiological correlates of hand preference in primary motor cortex of adult squirrel monkeys. J Neurosci 1992;12:2918-2947.
  10. Hammond G. Correlates of human handedness in primary motor cortex: a review and hypothesis. Neurosci Biobehav Rev 2002;26:285-292. https://doi.org/10.1016/S0149-7634(02)00003-9
  11. Ilic TV, Jung P, Ziemann U. Subtle hemispheric asymmetry of motor cortical inhibitory tone. Clin Neurophysiol 2004;115:330-340. https://doi.org/10.1016/j.clinph.2003.09.017
  12. Garry MI, Kamen G, Nordstrom MA. Hemispheric differences in the relationship between corticomotor excitability changes following a fine-motor task and motor learning. J Neurophysiol 2004;91:1570-1578. https://doi.org/10.1152/jn.00595.2003
  13. Hess G, Aizenman CD, Donoghue JP. Conditions for the induction of long-term potentiation in layer II/III horizontal connections of the rat motor cortex. J Neurophysiol 1996;75:1765-1778. https://doi.org/10.1152/jn.1996.75.5.1765
  14. Hess G, Donoghue JP. Long-term potentiation of horizontal connections provides a mechanism to reorganize cortical motor maps. J Neurophysiol 1994;71:2543-2547. https://doi.org/10.1152/jn.1994.71.6.2543
  15. Hallett M. Transcranial magnetic stimulation and the human brain. Nature 2000;406:147-150. https://doi.org/10.1038/35018000
  16. Rothwell JC. Techniques and mechanisms of action of transcranial stimulation of the human motor cortex. J Neurosci Methods 1997;74:113-122. https://doi.org/10.1016/S0165-0270(97)02242-5
  17. Terao Y, Ugawa Y. Basic mechanisms of TMS. J Clin Neurophysiol 2002;19:322-343. https://doi.org/10.1097/00004691-200208000-00006
  18. Stefan K, Kunesch E, Cohen LG, Benecke R, Classen J. Induction of plasticity in the human motor cortex by paired associative stimulation. Brain 2000;123 Pt 3:572-584. https://doi.org/10.1093/brain/123.3.572
  19. Stefan K, Wycislo M, Gentner R, Schramm A, Naumann M, Reiners K, et al. Temporary occlusion of associative motor cortical plasticity by prior dynamic motor training. Cereb Cortex 2006;16:376-385. https://doi.org/10.1093/cercor/bhi116
  20. Stefan K, Kunesch E, Benecke R, Cohen LG, Classen J. Mechanisms of enhancement of human motor cortex excitability induced by interventional paired associative stimulation. J Physiol 2002;543:699-708. https://doi.org/10.1113/jphysiol.2002.023317
  21. Ziemann U, Chen R, Cohen LG, Hallett M. Dextromethorphan decreases the excitability of the human motor cortex. Neurology 1998;51:1320-1324. https://doi.org/10.1212/WNL.51.5.1320
  22. Ziemann U, Ilic TV, Pauli C, Meintzschel F, Ruge D. Learning modifies subsequent induction of long-term potentiation-like and long-term depression-like plasticity in human motor cortex. J Neurosci 2004;24:1666-1672. https://doi.org/10.1523/JNEUROSCI.5016-03.2004
  23. Ziemann U, Ilic TV, Jung P. Long-term potentiation (LTP)-like plasticity and learning in human motor cortex-investigations with transcranial magnetic stimulation (TMS). Suppl Clin Neurophysiol 2006;59:19-25.
  24. Oldfield RC. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 1971;9:97-113. https://doi.org/10.1016/0028-3932(71)90067-4
  25. Rosenkranz K, Williamon A, Rothwell JC. Motorcortical excitability and synaptic plasticity is enhanced in professional musicians. J Neurosci 2007;27:5200-5206. https://doi.org/10.1523/JNEUROSCI.0836-07.2007
  26. Ridding MC, Flavel SC. Induction of plasticity in the dominant and non-dominant motor cortices of humans. Exp Brain Res 2006;171:551-557. https://doi.org/10.1007/s00221-005-0309-2
  27. McDonnell MN, Orekhov Y, Ziemann U. Suppression of LTP-like plasticity in human motor cortex by the GABAB receptor agonist baclofen. Exp Brain Res 2007;180:181-186. https://doi.org/10.1007/s00221-006-0849-0
  28. Muller JF, Orekhov Y, Liu Y, Ziemann U. Homeostatic plasticity in human motor cortex demonstrated by two consecutive sessions of paired associative stimulation. Eur J Neurosci 2007;25:3461-3468. https://doi.org/10.1111/j.1460-9568.2007.05603.x
  29. Sale MV, Ridding MC, Nordstrom MA. Factors influencing the magnitude and reproducibility of corticomotor excitability changes induced by paired associative stimulation. Exp Brain Res 2007;181:615-626. https://doi.org/10.1007/s00221-007-0960-x
  30. Tecchio F, Zappasodi F, Pasqualetti P, De Gennaro L, Pellicciari MC, Ercolani M, et al. Age dependence of primary motor cortex plasticity induced by paired associative stimulation. Clin Neurophysiol 2008;119:675-682. https://doi.org/10.1016/j.clinph.2007.10.023
  31. Jung P, Ziemann U. Homeostatic and nonhomeostatic modulation of learning in human motor cortex. J Neurosci 2009;29:5597-5604. https://doi.org/10.1523/JNEUROSCI.0222-09.2009
  32. Russmann H, Lamy JC, Shamim EA, Meunier S, Hallett M. Associative plasticity in intracortical inhibitory circuits in human motor cortex. Clin Neurophysiol 2009;120:1204-1212. https://doi.org/10.1016/j.clinph.2009.04.005
  33. Muller-Dahlhaus JF, Orekhov Y, Liu Y, Ziemann U. Interindividual variability and age-dependency of motor cortical plasticity induced by paired associative stimulation. Exp Brain Res 2008;187:467-475. https://doi.org/10.1007/s00221-008-1319-7
  34. Wolters A, Sandbrink F, Schlottmann A, Kunesch E, Stefan K, Cohen LG, et al. A temporally asymmetric Hebbian rule governing plasticity in the human motor cortex. J Neurophysiol 2003;89:2339-2345. https://doi.org/10.1152/jn.00900.2002
  35. Fratello F, Veniero D, Curcio G, Ferrara M, Marzano C, Moroni F, et al. Modulation of corticospinal excitability by paired associative stimulation: reproducibility of effects and intraindividual reliability. Clin Neurophysiol 2006;117:2667-2674. https://doi.org/10.1016/j.clinph.2006.07.315
  36. Nitsche MA, Roth A, Kuo MF, Fischer AK, Liebetanz D, Lang N, et al. Timing-dependent modulation of associative plasticity by general network excitability in the human motor cortex. J Neurosci 2007;27:3807-3812. https://doi.org/10.1523/JNEUROSCI.5348-06.2007
  37. Rosenkranz K, Kacar A, Rothwell JC. Differential modulation of motor cortical plasticity and excitability in early and late phases of human motor learning. J Neurosci 2007;27:12058-12066. https://doi.org/10.1523/JNEUROSCI.2663-07.2007
  38. Rioult-Pedotti MS, Friedman D, Hess G, Donoghue JP. Strengthening of horizontal cortical connections following skill learning. Nat Neurosci 1998;1:230-234. https://doi.org/10.1038/678
  39. Rioult-Pedotti MS, Friedman D, Donoghue JP. Learning-induced LTP in neocortex. Science 2000;290:533-536. https://doi.org/10.1126/science.290.5491.533