DOI QR코드

DOI QR Code

A Computational Model of Cytosolic and Mitochondrial [$Ca^{2+}$] in Paced Rat Ventricular Myocytes

  • Youm, Jae-Boum (National Research Laboratory for Mitochondrial Signaling, Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University) ;
  • Choi, Seong-Woo (National Research Laboratory for Mitochondrial Signaling, Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University) ;
  • Jang, Chang-Han (National Research Laboratory for Mitochondrial Signaling, Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University) ;
  • Kim, Hyoung-Kyu (National Research Laboratory for Mitochondrial Signaling, Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University) ;
  • Leem, Chae-Hun (Department of Physiology and the Institute for Calcium Research, University of Ulsan College of Medicine) ;
  • Kim, Na-Ri (National Research Laboratory for Mitochondrial Signaling, Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University) ;
  • Han, Jin (National Research Laboratory for Mitochondrial Signaling, Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University)
  • 투고 : 2011.07.08
  • 심사 : 2011.08.09
  • 발행 : 2011.08.30

초록

We carried out a series of experiment demonstrating the role of mitochondria in the cytosolic and mitochondrial $Ca^{2+}$ transients and compared the results with those from computer simulation. In rat ventricular myocytes, increasing the rate of stimulation (1~3 Hz) made both the diastolic and systolic [$Ca^{2+}]$ bigger in mitochondria as well as in cytosol. As L-type $Ca^{2+}$ channel has key influence on the amplitude of $Ca^{2+}$ -induced $Ca^{2+}$ release, the relation between stimulus frequency and the amplitude of $Ca^{2+}$ transients was examined under the low density (1/10 of control) of L-type $Ca^{2+}$ channel in model simulation, where the relation was reversed. In experiment, block of $Ca^{2+}$ uniporter on mitochondrial inner membrane significantly reduced the amplitude of mitochondrial $Ca^{2+}$ transients, while it failed to affect the cytosolic $Ca^{2+}$ transients. In computer simulation, the amplitude of cytosolic $Ca^{2+}$ transients was not affected by removal of $Ca^{2+}$ uniporter. The application of carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP) known as a protonophore on mitochondrial membrane to rat ventricular myocytes gradually increased the diastolic [$Ca^{2+}$] in cytosol and eventually abolished the $Ca^{2+}$ transients, which was similarly reproduced in computer simulation. The model study suggests that the relative contribution of L-type $Ca^{2+}$ channel to total transsarcolemmal $Ca^{2+}$ flux could determine whether the cytosolic $Ca^{2+}$ transients become bigger or smaller with higher stimulus frequency. The present study also suggests that cytosolic $Ca^{2+}$ affects mitochondrial $Ca^{2+}$ in a beat-to-beat manner, however, removal of $Ca^{2+}$ influx mechanism into mitochondria does not affect the amplitude of cytosolic $Ca^{2+}$ transients.

키워드

참고문헌

  1. Sakamoto J, Tonomura Y. Order of release of ADP and Pi from phosphoenzyme with bound ADP of $Ca^{2+}$-dependent ATPase from sarcoplasmic reticulum and of $Na^{+}$, $K^{+}$-dependent ATPase studied by ADP-inhibition patterns. J Biochem. 1980;87: 1721-1727. https://doi.org/10.1093/oxfordjournals.jbchem.a132916
  2. Jensen AM, Sorensen TL, Olesen C, Moller JV, Nissen P. Modulatory and catalytic modes of ATP binding by the calcium pump. EMBO J. 2006;25:2305-2314. https://doi.org/10.1038/sj.emboj.7601135
  3. Wan B, Doumen C, Duszynski J, Salama G, Vary TC, LaNoue KF. Effects of cardiac work on electrical potential gradient across mitochondrial membrane in perfused rat hearts. Am J Physiol. 1993;265:H453-460. https://doi.org/10.1152/ajpcell.1993.265.2.C453
  4. Territo PR, Mootha VK, French SA, Balaban RS. $Ca^{2+}$ activation of heart mitochondrial oxidative phosphorylation: role of the $F_{0}$/$F_{1}$-ATPase. Am J Physiol Cell Physiol. 2000;278:C423-435. https://doi.org/10.1152/ajpcell.2000.278.2.C423
  5. McCormack JG, Halestrap AP, Denton RM. Role of calcium ions in regulation of mammalian intramitochondrial metabolism. Physiol Rev. 1990;70:391-425. https://doi.org/10.1152/physrev.1990.70.2.391
  6. Hansford RG. Dehydrogenase activation by $Ca^{2+}$ in cells and tissues. J Bioenerg Biomembr. 1991;23:823-854. https://doi.org/10.1007/BF00786004
  7. Brandes R, Bers DM. Simultaneous measurements of mitochondrial NADH and $Ca^{2+}$ during increased work in intact rat heart trabeculae. Biophys J. 2002;83:587-604. https://doi.org/10.1016/S0006-3495(02)75194-1
  8. Trollinger DR, Cascio WE, Lemasters JJ. Mitochondrial calcium transients in adult rabbit cardiac myocytes: inhibition by ruthenium red and artifacts caused by lysosomal loading of $Ca^{2+}$- indicating fluorophores. Biophys J. 2000;79:39-50. https://doi.org/10.1016/S0006-3495(00)76272-2
  9. Andrienko TN, Picht E, Bers DM. Mitochondrial free calcium regulation during sarcoplasmic reticulum calcium release in rat cardiac myocytes. J Mol Cell Cardiol. 2009;46:1027-1036. https://doi.org/10.1016/j.yjmcc.2009.03.015
  10. Sedova M, Dedkova EN, Blatter LA. Integration of rapid cytosolic $Ca^{2+}$ signals by mitochondria in cat ventricular myocytes. Am J Physiol Cell Physiol. 2006;291:C840-850. https://doi.org/10.1152/ajpcell.00619.2005
  11. Matsuoka S, Sarai N, Kuratomi S, Ono K, Noma A. Role of individual ionic current systems in ventricular cells hypothesized by a model study. Jpn J Physiol. 2003;53:105-123. https://doi.org/10.2170/jjphysiol.53.105
  12. Cortassa S, Aon MA, O'Rourke B, Jacques R, Tseng HJ, Marbán E, Winslow RL. A computational model integrating electrophysiology, contraction, and mitochondrial bioenergetics in the ventricular myocyte. Biophys J. 2006;91:1564-1589. https://doi.org/10.1529/biophysj.105.076174
  13. Bernardi P. Mitochondrial transport of cations: channels, exchangers, and permeability transition. Physiol Rev. 1999;79: 1127-1155. https://doi.org/10.1152/physrev.1999.79.4.1127
  14. Pandit SV, Clark RB, Giles WR, Demir SS. A mathematical model of action potential heterogeneity in adult rat left ventricular myocytes. Biophys J. 2001;81:3029-3051. https://doi.org/10.1016/S0006-3495(01)75943-7
  15. Kang SH, Park WS, Kim N, Youm JB, Warda M, Ko JH, Ko EA, Han J. Mitochondrial $Ca^{2+}$-activated $K^{+}$ channels more efficiently reduce mitochondrial $Ca^{2+}$ overload in rat ventricular myocytes. Am J Physiol Heart Circ Physiol. 2007;293: H307-313. https://doi.org/10.1152/ajpheart.00789.2006
  16. Youm JB, Jo SH, Leem CH, Ho WK, Earm YE. Role of stretch-activated channels in stretch-induced changes of electrical activity in rat atrial myocytes. Korean J Physiol Pharmacol. 2004;8:33-41.
  17. Katsube Y, Yokoshiki H, Nguyen L, Yamamoto M, Sperelakis N. L-type $Ca^{2+}$ currents in ventricular myocytes from neonatal and adult rats. Can J Physiol Pharmacol. 1998;76:873-881. https://doi.org/10.1139/y98-076
  18. Berlin JR, Bassani JW, Bers DM. Intrinsic cytosolic calcium buffering properties of single rat cardiac myocytes. Biophys J. 1994;67:1775-1787. https://doi.org/10.1016/S0006-3495(94)80652-6
  19. Page E. Quantitative ultrastructural analysis in cardiac membrane physiology. Am J Physiol. 1978;235:C147-158.
  20. Shimoni Y, Severson D, Giles W. Thyroid status and diabetes modulate regional differences in potassium currents in rat ventricle. J Physiol. 1995;488:673-688. https://doi.org/10.1113/jphysiol.1995.sp020999
  21. Nie A, Meng Z. Sulfur dioxide derivative modulation of potassium channels in rat ventricular myocytes. Arch Biochem Biophys. 2005;442:187-195. https://doi.org/10.1016/j.abb.2005.08.004
  22. Apkon M, Nerbonne JM. Characterization of two distinct depolarization-activated $K^{+}$ currents in isolated adult rat ventricular myocytes. J Gen Physiol. 1991;97:973-1011. https://doi.org/10.1085/jgp.97.5.973
  23. Wettwer E, Amos G, Gath J, Zerkowski HR, Reidemeister JC, Ravens U. Transient outward current in human and rat ventricular myocytes. Cardiovasc Res. 1993;27:1662-1669. https://doi.org/10.1093/cvr/27.9.1662
  24. Volk T, Nguyen TH, Schultz JH, Faulhaber J, Ehmke H. Regional alterations of repolarizing $K^{+}$ currents among the left ventricular free wall of rats with ascending aortic stenosis. J Physiol. 2001;530:443-455. https://doi.org/10.1111/j.1469-7793.2001.0443k.x
  25. Pond AL, Scheve BK, Benedict AT, Petrecca K, Van Wagoner DR, Shrier A, Nerbonne JM. Expression of distinct ERG proteins in rat, mouse, and human heart. Relation to functional IKr channels. J Biol Chem. 2000;275:5997-6006. https://doi.org/10.1074/jbc.275.8.5997
  26. Sakmann B, Trube G. Conductance properties of single inwardly rectifying potassium channels in ventricular cells from guinea-pig heart. J Physiol. 1984;347:641-657. https://doi.org/10.1113/jphysiol.1984.sp015088
  27. Fauconnier J, Lacampagne A, Rauzier JM, Vassort G, Richard S. $Ca^{2+}$-dependent reduction of $I_{K1}$ in rat ventricular cells: a novel paradigm for arrhythmia in heart failure? Cardiovasc Res. 2005;68:204-212. https://doi.org/10.1016/j.cardiores.2005.05.024
  28. Nichols CG, Lederer WJ. The regulation of ATP-sensitive $K^{+}$ channel activity in intact and permeabilized rat ventricular myocytes. J Physiol. 1990;423:91-110. https://doi.org/10.1113/jphysiol.1990.sp018013
  29. Luo CH, Rudy Y. A dynamic model of the cardiac ventricular action potential. I. Simulations of ionic currents and concentration changes. Circ Res. 1994;74:1071-1096. https://doi.org/10.1161/01.RES.74.6.1071
  30. Brown AM, Lee KS, Powell T. Sodium current in single rat heart muscle cells. J Physiol. 1981;318:479-500. https://doi.org/10.1113/jphysiol.1981.sp013879
  31. Bogdanov KY, Ziman BD, Spurgeon HA, Lakatta EG. L- and T-type calcium currents differ in finch and rat ventricular cardiomyocytes. J Mol Cell Cardiol. 1995;27:2581-2593. https://doi.org/10.1006/jmcc.1995.0045
  32. Zühlke RD, Pitt GS, Deisseroth K, Tsien RW, Reuter H. Calmodulin supports both inactivation and facilitation of L-type calcium channels. Nature. 1999;399:159-162. https://doi.org/10.1038/20200
  33. Sun L, Fan JS, Clark JW, Palade PT. A model of the L-type $Ca^{2+}$ channel in rat ventricular myocytes: ion selectivity and inactivation mechanisms. J Physiol. 2000;529:139-158. https://doi.org/10.1111/j.1469-7793.2000.00139.x
  34. Youm JB, Han J, Kim N, Zhang YH, Kim E, Joo H, Hun Leem C, Joon Kim S, Cha KA, Earm YE. Role of stretch-activated channels on the stretch-induced changes of rat atrial myocytes. Prog Biophys Mol Biol. 2006;90:186-206. https://doi.org/10.1016/j.pbiomolbio.2005.06.003
  35. Coulombe A, Lefèvre IA, Baro I, Coraboeuf E. Barium- and calcium-permeable channels open at negative membrane potentials in rat ventricular myocytes. J Membr Biol. 1989; 111:57-67. https://doi.org/10.1007/BF01869209
  36. Wang SY, Clague JR, Langer GA. Increase in calcium leak channel activity by metabolic inhibition or hydrogen peroxide in rat ventricular myocytes and its inhibition by polycation. J Mol Cell Cardiol. 1995;27:211-222. https://doi.org/10.1016/S0022-2828(08)80020-X
  37. Bers DM. Ca influx and sarcoplasmic reticulum Ca release in cardiac muscle activation during postrest recovery. Am J Physiol. 1985;248:H366-381.
  38. Dibb KM, Eisner DA, Trafford AW. Regulation of systolic $[$Ca^{2+}$]_i$ and cellular $Ca^{2+}$ flux balance in rat ventricular myocytes by SR $Ca^{2+}$, L-type $Ca^{2+}$ current and diastolic $[$Ca^{2+}$]_i$. J Physiol. 2007;585:579-592. https://doi.org/10.1113/jphysiol.2007.141473
  39. Harrison SM, McCall E, Boyett MR. The relationship between contraction and intracellular sodium in rat and guinea-pig ventricular myocytes. J Physiol. 1992;449:517-550. https://doi.org/10.1113/jphysiol.1992.sp019100
  40. Niederer SA, Smith NP. A mathematical model of the slow force response to stretch in rat ventricular myocytes. Biophys J. 2007;92:4030-4044. https://doi.org/10.1529/biophysj.106.095463
  41. Negroni JA, Lascano EC. A cardiac muscle model relating sarcomere dynamics to calcium kinetics. J Mol Cell Cardiol. 1996;28:915-929.
  42. Magnus G, Keizer J. Minimal model of beta-cell mitochondrial $Ca^{2+}$ handling. Am J Physiol. 1997;273:C717-733. https://doi.org/10.1152/ajpcell.1997.273.2.C717
  43. Nguyen MH, Dudycha SJ, Jafri MS. Effect of $Ca^{2+}$ on cardiac mitochondrial energy production is modulated by $Na^{+}$ and $H^{+}$ dynamics. Am J Physiol Cell Physiol. 2007;292:C2004-2020. https://doi.org/10.1152/ajpcell.00271.2006
  44. Jung DW, Apel LM, Brierley GP. Transmembrane gradients of free $Na^{+}$ in isolated heart mitochondria estimated using a fluorescent probe. Am J Physiol. 1992;262:C1047-1055. https://doi.org/10.1152/ajpcell.1992.262.4.C1047
  45. de la Fuente S, Montenegro P, Fonteriz RI, Moreno A, Lobatón CD, Montero M, Alvarez J. The dynamics of mitochondrial $Ca^{2+}$ fluxes. Biochim Biophys Acta. 2010;1797:1727-1735. https://doi.org/10.1016/j.bbabio.2010.06.008
  46. Linz KW, Meyer R. Control of L-type calcium current during the action potential of guinea-pig ventricular myocytes. J Physiol. 1998;513:425-442. https://doi.org/10.1111/j.1469-7793.1998.425bb.x
  47. Koch-Weser J, Blinks JR. The influence of the interval between beats on myocardial contractility. Pharmacol Rev. 1963;15: 601-652.
  48. Capogrossi MC, Kort AA, Spurgeon HA, Lakatta EG. Single adult rabbit and rat cardiac myocytes retain the $Ca^{2+}$- and species-dependent systolic and diastolic contractile properties of intact muscle. J Gen Physiol. 1986;88:589-613. https://doi.org/10.1085/jgp.88.5.589
  49. Borzak S, Murphy S, Marsh JD. Mechanisms of rate staircase in rat ventricular cells. Am J Physiol. 1991;260:H884-892.
  50. Frampton JE, Orchard CH, Boyett MR. Diastolic, systolic and sarcoplasmic reticulum [$Ca^{2+}$] during inotropic interventions in isolated rat myocytes. J Physiol. 1991;437:351-375. https://doi.org/10.1113/jphysiol.1991.sp018600
  51. Clark RB, Bouchard RA, Salinas-Stefanon E, Sanchez-Chapula J, Giles WR. Heterogeneity of action potential waveforms and potassium currents in rat ventricle. Cardiovasc Res. 1993;27: 1795-1799. https://doi.org/10.1093/cvr/27.10.1795
  52. Reed KC, Bygrave FL. The inhibition of mitochondrial calcium transport by lanthanides and ruthenium red. Biochem J. 1974;140:143-155. https://doi.org/10.1042/bj1400143
  53. Gunter TE, Pfeiffer DR. Mechanisms by which mitochondria transport calcium. Am J Physiol. 1990;258:C755-786. https://doi.org/10.1152/ajpcell.1990.258.5.C755
  54. Sparagna GC, Gunter KK, Sheu SS, Gunter TE. Mitochondrial calcium uptake from physiological-type pulses of calcium. A description of the rapid uptake mode. J Biol Chem. 1995; 270:27510-27515. https://doi.org/10.1074/jbc.270.46.27510
  55. Beutner G, Sharma VK, Lin L, Ryu SY, Dirksen RT, Sheu SS. Type 1 ryanodine receptor in cardiac mitochondria: transducer of excitation-metabolism coupling. Biochim Biophys Acta. 2005; 1717:1-10. https://doi.org/10.1016/j.bbamem.2005.09.016
  56. Li W, Shariat-Madar Z, Powers M, Sun X, Lane RD, Garlid KD. Reconstitution, identification, purification, and immunological characterization of the 110-kDa $Na^{+}$/$Ca^{2+}$ antiporter from beef heart mitochondria. J Biol Chem. 1992;267:17983-17989.
  57. Vay L, Hernandez-SanMiguel E, Lobaton CD, Moreno A, Montero M, Alvarez J. Mitochondrial free [$Ca^{2+}$] levels and the permeability transition. Cell Calcium. 2009;45:243-250. https://doi.org/10.1016/j.ceca.2008.10.007
  58. Hoffman BF, Kelly JJ Jr. Effects of rate and rhythm on contraction of rat papillary muscle. Am J Physiol. 1959;197: 1199-1204.
  59. Kort AA, Lakatta EG. Spontaneous sarcoplasmic reticulum calcium release in rat and rabbit cardiac muscle: relation to transient and rested-state twitch tension. Circ Res. 1988;63: 969-979. https://doi.org/10.1161/01.RES.63.5.969
  60. Shim EB, Leem CH, Abe Y, Noma A. A new multi-scale simulation model of the circulation: from cells to system. Philos Transact A Math Phys Eng Sci. 2006;364:1483-1500. https://doi.org/10.1098/rsta.2006.1782
  61. Maack C, Cortassa S, Aon MA, Ganesan AN, Liu T, O'Rourke B. Elevated cytosolic $Na^{+}$ decreases mitochondrial $Ca^{2+}$ uptake during excitation-contraction coupling and impairs energetic adaptation in cardiac myocytes. Circ Res. 2006;99:172-182. https://doi.org/10.1161/01.RES.0000232546.92777.05
  62. Robert V, Gurlini P, Tosello V, Nagai T, Miyawaki A, Di Lisa F, Pozzan T. Beat-to-beat oscillations of mitochondrial [$Ca^{2+}$] in cardiac cells. EMBO J. 2001;20:4998-5007. https://doi.org/10.1093/emboj/20.17.4998
  63. Griffiths EJ, Wei SK, Haigney MC, Ocampo CJ, Stern MD, Silverman HS. Inhibition of mitochondrial calcium efflux by clonazepam in intact single rat cardiomyocytes and effects on NADH production. Cell Calcium. 1997;21:321-329. https://doi.org/10.1016/S0143-4160(97)90120-2
  64. Bassani RA, Bassani JW, Bers DM. Mitochondrial and sarcolemmal $Ca^{2+}$ transport reduce$ [$Ca^{2+}$]_i$ during caffeine contractures in rabbit cardiac myocytes. J Physiol. 1992;453: 591-608. https://doi.org/10.1113/jphysiol.1992.sp019246
  65. Bassani JW, Bassani RA, Bers DM. Relaxation in rabbit and rat cardiac cells: species-dependent differences in cellular mechanisms. J Physiol. 1994;476:279-293. https://doi.org/10.1113/jphysiol.1994.sp020130
  66. Negretti N, O'Neill SC, Eisner DA. The relative contributions of different intracellular and sarcolemmal systems to relaxation in rat ventricular myocytes. Cardiovasc Res. 1993;27:1826-1830. https://doi.org/10.1093/cvr/27.10.1826
  67. Bassani RA, Bassani JW, Bers DM. Relaxation in ferret ventricular myocytes: unusual interplay among calcium transport systems. J Physiol. 1994;476:295-308. https://doi.org/10.1113/jphysiol.1994.sp020131
  68. Pacher P, Csordas P, Schneider T, Hajnoczky G. Quantification of calcium signal transmission from sarco-endoplasmic reticulum to the mitochondria. J Physiol. 2000;529:553-564. https://doi.org/10.1111/j.1469-7793.2000.00553.x
  69. Heytler PG. Uncouplers of oxidative phosphorylation. Methods Enzymol. 1979;55:462-472.
  70. Saotome M, Katoh H, Satoh H, Nagasaka S, Yoshihara S, Terada H, Hayashi H. Mitochondrial membrane potential modulates regulation of mitochondrial $Ca^{2+}$ in rat ventricular myocytes. Am J Physiol Heart Circ Physiol. 2005;288: H1820-1828. https://doi.org/10.1152/ajpheart.00589.2004
  71. Goldhaber JI, Parker JM, Weiss JN. Mechanisms of excitationcontraction coupling failure during metabolic inhibition in guinea-pig ventricular myocytes. J Physiol. 1991;443:371-386. https://doi.org/10.1113/jphysiol.1991.sp018838
  72. Gunter TE, Gunter KK, Sheu SS, Gavin CE. Mitochondrial calcium transport: physiological and pathological relevance. Am J Physiol. 1994;267:C313-339. https://doi.org/10.1152/ajpcell.1994.267.2.C313
  73. Yuan XJ, Sugiyama T, Goldman WF, Rubin LJ, Blaustein MP. A mitochondrial uncoupler increases KCa currents but decreases KV currents in pulmonary artery myocytes. Am J Physiol. 1996;270:C321-331. https://doi.org/10.1152/ajpcell.1996.270.1.C321
  74. Zablockaite D, Gendviliene V, Martisiene I, Jurevicius J. Effect of oxidative phosphorylation uncoupler FCCP and $F_{1}F_{0}$-ATPase inhibitor oligomycin on the electromechanical activity of human myocardium. Adv Med Sci. 2007;52:89-93.
  75. Higgins TJ, Bailey PJ. The effects of cyanide and iodoacetate intoxication and ischaemia on enzyme release from the perfused rat heart. Biochim Biophys Acta. 1983;762:67-75. https://doi.org/10.1016/0167-4889(83)90118-0
  76. Weiss J, Hiltbrand B. Functional compartmentation of glycolytic versus oxidative metabolism in isolated rabbit heart. J Clin Invest. 1985;75:436-447. https://doi.org/10.1172/JCI111718
  77. Weiss JN, Lamp ST. Glycolysis preferentially inhibits ATPsensitive $K^{+}$ channels in isolated guinea pig cardiac myocytes. Science. 1987;238:67-69. https://doi.org/10.1126/science.2443972
  78. Jeremy RW, Koretsune Y, Marban E, Becker LC. Relation between glycolysis and calcium homeostasis in postischemic myocardium. Circ Res. 1992;70:1180-1190. https://doi.org/10.1161/01.RES.70.6.1180
  79. Stanley WC, Recchia FA, Lopaschuk GD. Myocardial substrate metabolism in the normal and failing heart. Physiol Rev. 2005;85:1093-1129. https://doi.org/10.1152/physrev.00006.2004
  80. Gibbs CL. Cardiac energetics. Physiol Rev. 1978;58:174-254. https://doi.org/10.1152/physrev.1978.58.1.174
  81. Suga H. Ventricular energetics. Physiol Rev. 1990;70:247-277. https://doi.org/10.1152/physrev.1990.70.2.247
  82. Brennan JP, Southworth R, Medina RA, Davidson SM, Duchen MR, Shattock MJ. Mitochondrial uncoupling, with low concentration FCCP, induces ROS-dependent cardioprotection independent of KATP channel activation. Cardiovasc Res. 2006;72: 313-321. https://doi.org/10.1016/j.cardiores.2006.07.019
  83. Crampin EJ, Smith NP, Langham AE, Clayton RH, Orchard CH. Acidosis in models of cardiac ventricular myocytes. Philos Transact A Math Phys Eng Sci. 2006;364:1171-1186. https://doi.org/10.1098/rsta.2006.1763